Skip to main content
Log in

On the discontinuity of images recovered by noncovex nonsmooth regularized isotropic models with box constraints

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Nonconvex nonsmooth regularizations have exhibited the ability of restoring images with neat edges in many applications, which has been provided a mathematical explanation by analyzing the discontinuity of the local minimizers of the variational models. Since in many applications the pixel intensity values in digital images are restricted in a certain given range, box constraints are adopted to improve the restorations. A similar property of nonconvex nonsmooth regularization for box-constrained models has been proved in the literature. While many theoretical results are available for anisotropic models, we investigate the isotropic case. We establish similar theoretical results for isotropic nonconvex nonsmooth models with box constraints. Numerical experiments are presented to validate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18 (11), 2419–2434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergmann, R., Chan, R.H., Hielscher, R., Persch, J., Steidl, G.: Restoration of manifold-valued images by half-quadratic minimization. Inverse Probl. Imaging 10(2), 281–304 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Bian, W., Chen, X.: Linearly constrained non-lipschitz optimization for image restoration. SIAM J. Imag. Sci. 8(4), 2294–2322 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bian, W., Chen, X.: Optimality and Complexity for Constrained Optimization Problems with Nonconvex Regularization. Mathematics of Operations Research (2017)

  5. Bondy, J., Murty, U.: Graph theory (graduate texts in mathematics) (2008)

  6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  7. Chan, R.H., Tao, M., Yuan, X.: Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imag. Sci. 6(1), 680–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, P.Y., Selesnick, I.W.: Group-sparse signal denoising: non-convex regularization, convex optimization. IEEE Trans. Signal Process. 62(13), 3464–3478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Ng, M.K., Zhang, C.: Non-Lipschitz-regularization and box constrained model for image restoration. IEEE Trans. Image Process. 21(12), 4709–4721 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X., Zhou, W.: Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization. SIAM J. Imag. Sci. 3 (4), 765–790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chouzenoux, E., Jezierska, A., Pesquet, J.C., Talbot, H.: A majorize-minimize subspace approach for 2 0 image regularization. SIAM J. Imag. Sci. 6(1), 563–591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, Y., Wang, W.W., Feng, X.C.: A new fast multiphase image segmentation algorithm based on nonconvex regularizer. Pattern Recogn. 45(1), 363–372 (2012)

    Article  MATH  Google Scholar 

  13. Hanke, M., Nagy, J.G., Vogel, C.: Quasi-Newton approach to nonnegative image restorations. Linear Algebra Appl. 316(1–3), 223–236 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hintermüller, M., Wu, T.: Nonconvex TVq -models in image restoration: analysis and a trust-region regularization based superlinearly convergent solver. SIAM J. Imag. Sci. 6(3), 1385–1415 (2013)

    Article  MATH  Google Scholar 

  15. Jung, M., Kang, M.: Efficient nonsmooth nonconvex optimization for image restoration and segmentation. J. Sci. Comput. 62(2), 336–370 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krishnan, D., Lin, P., Yip, A.M.: A primal-dual active-set method for non-negativity constrained total variation deblurring problems. IEEE Trans. Image Process. 16(11), 2766–2777 (2007)

    Article  MathSciNet  Google Scholar 

  17. Nagy, J.G.: Enforcing nonnegativity in image reconstruction algorithms. Proc Spie 4121, 182–190 (2000)

    Article  Google Scholar 

  18. Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model. Simul. 4(3), 960–991 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nikolova, M., Ng, M.K., Tam, C.-P.: Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Trans. Image Process. 19 (12), 3073–3088 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nikolova, M., Ng, M.K., Tam, C.P.: On 1 data fitting and concave regularization for image recovery. SIAM J. Scientific Comput. 35(1), A397–A430 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nikolova, M., Ng, M.K., Zhang, S., Ching, W.K.: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imag. Sci. 1(1), 2–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ochs, P., Chen, Y., Brox, T., Pock, T.: ipiano: Inertial proximal algorithm for non-convex optimization. SIAM J. Imag. Sci. 7(2), 1388–1419 (2014)

    Article  MATH  Google Scholar 

  23. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision. SIAM J. Imag. Sci. 8(1), 331–372 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Robini, M.C., Yang, F., Zhu, Y.: Inexact half-quadratic optimization for linear inverse problems. SIAM J. Imag. Sci. 11(2), 1078–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Robini, M.C., Zhu, Y.: Generic half-quadratic optimization for image reconstruction. SIAM J. Imag. Sci. 8(3), 1752–1797 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data. SIAM J. Imag. Sci. 7(4), 2226–2257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, C., Liu, Z.-F., Wen, S.: A general truncated regularization framework for contrast-preserving variational signal and image restoration: motivation and implementation. arXiv:1611.08817 (2016)

  29. Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imag. Sci. 3(3), 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, L., Pong, T.K., Chen, X.: Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction. SIAM J. Imag. Sci. 10(1), 74–110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zeng, C., Wu, C.: On the edge recovery property of noncovex nonsmooth regularization in image restoration. SIAM J. Numer. Anal. 56(2), 1168–1182 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for the careful reading of the manuscript and providing valuable suggestions that helped improve this paper. This work is supported by Postdoctoral Science Foundation of China (2016M601248), National Natural Science Foundation of China (Grants 11301289, 11531013 and 11871035), Recruitment Program of Global Young Expert, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Wu.

Additional information

Communicated by: Russell Luke

Appendix The: calculation of the quadratic forms

Appendix The: calculation of the quadratic forms

For any function \(\mathcal {F}(v) \in \mathcal {C}^{2}(\mathbb {R}^{m_{1}})\), our convention of the operator ∇ is \(\nabla \mathcal {F} =(\frac {\partial }{\partial v_{1}} \mathcal {F},\ldots ,\frac {\partial }{\partial v_{m_{1}}} \mathcal {F})^{T}\). Then, the Hessian matrix of F is \(\nabla ^{2} \mathcal {F} =\nabla \nabla ^{T} \mathcal {F}\).

The first and second differentials of \(\mathcal {F}(v)\) at v are well defined and read

$$\begin{array}{@{}rcl@{}} \nabla \mathcal{F}(v^{*}) & =&\lambda {A_{1}^{T}}(A_{1}v^{*}-f^{\circ})+ \sum\limits_{i\in I_{1} \cup \partial B}\nabla \varphi(\|G_{i} u^{*}\|), \\ \nabla^{2} \mathcal{F}(v^{*}) & =&\lambda {A_{1}^{T}}A_{1} + \sum\limits_{i \in I_{1} \cup \partial B}\nabla^{2} \varphi(\|G_{i} u^{*}\|), \end{array} $$

where

$$\begin{array}{@{}rcl@{}} \nabla \varphi(\|G_{i} u^{*}\|) & =&\varphi^{\prime}(\|G_{i} u^{*}\|)\nabla(\|G_{i} u^{*}\|), \\ \nabla^{2} \varphi(\|G_{i} u^{*}\|) & =& \nabla (\nabla^{T} \varphi(\|G_{i} u^{*}\|)) = \nabla (\varphi^{\prime}(\|G_{i} u^{*}\|)\nabla^{T}(\|G_{i} u^{*}\|)). \end{array} $$

Notice that u = χ(v) and \({G_{i}^{d}} \chi (v) = {g_{i}^{d}} v + {{\Delta }_{i}^{d}}\). We have

$$\begin{array}{@{}rcl@{}} 2\|G_{i} u^{*}\|\nabla(\|G_{i} u^{*}\|) &=& \nabla(\|G_{i} u^{*}\|^{2}) \\ & =& \nabla(({G_{i}^{x}} u^{*})^{2}+({G_{i}^{y}} u^{*})^{2}) \\ & =& 2({{g_{i}^{x}}}^{T} {G_{i}^{x}}u^{*}+{{g_{i}^{y}}}^{T} {G_{i}^{y}}u^{*}) \end{array} $$

It follows that

$$\nabla(\|G_{i} u^{*}\|)=\frac{{{g_{i}^{x}}}^{T} {G_{i}^{x}}u^{*}+{{g_{i}^{y}}}^{T} {G_{i}^{y}}u^{*}}{\|G_{i} u^{*}\|} =\frac{{g_{i}^{T}}G_{i}u^{*}}{\|G_{i} u^{*}\|}. $$

We have

$$\begin{array}{@{}rcl@{}} \nabla^{2} \varphi(\|G_{i} u^{*}\|) & =& \nabla \left( \varphi^{\prime}(\|G_{i} u^{*}\|)\frac{(G_{i}u^{*})^{T}g_{i}}{\|G_{i} u^{*}\|}\right) \\ & =& \nabla \varphi^{\prime}(\|G_{i} u^{*}\|)\frac{(G_{i}u^{*})^{T}g_{i}}{\|G_{i} u^{*}\|} + \varphi^{\prime}(\|G_{i} u^{*}\|)\nabla\left( \frac{(G_{i}u^{*})^{T}g_{i}}{\|G_{i} u^{*}\|}\right), \end{array} $$

where

$$\begin{array}{@{}rcl@{}} \nabla \varphi^{\prime}(\|G_{i} u^{*}\|) & =& \varphi^{\prime\prime}(\|G_{i} u^{*}\|)\nabla(\|G_{i} u^{*}\|)=\varphi^{\prime\prime}(\|G_{i} u^{*}\|)\frac{{g_{i}^{T}}G_{i}u^{*}}{\|G_{i} u^{*}\|}, \\ \nabla \left( \frac{(G_{i}u^{*})^{T}g_{i}}{\|G_{i} u^{*}\|}\right) & =& \nabla \left( \frac{1}{\|G_{i} u^{*}\|}\right)(G_{i}u^{*})^{T}g_{i}+\frac{1}{\|G_{i} u^{*}\|}\nabla ((G_{i}u^{*})^{T}g_{i}), \end{array} $$

and

$$\begin{array}{@{}rcl@{}} \nabla \left( \frac{1}{\|G_{i} u^{*}\|}\right) & =&\nabla (\|G_{i} u^{*}\|^{-1})=\frac{-1}{\|G_{i} u^{*}\|^{2}}\nabla (\|G_{i} u^{*}\|)=-\frac{{g_{i}^{T}}G_{i}u^{*}}{\|G_{i} u^{*}\|^{3}}, \\ \nabla ((G_{i}u^{*})^{T}g_{i}) & =& \nabla((G_{i}u^{*})^{T}) g_{i}, \end{array} $$

where \(\nabla ((G_{i}u^{*})^{T}) = (\nabla ({G_{i}^{x}} u^{*}),\nabla ({G_{i}^{y}} u^{*}))=({{g_{i}^{x}}}^{T},{{g_{i}^{y}}}^{T})={g_{i}^{T}}\). Thus,

$$\nabla ((G_{i}u^{*})^{T}G_{i})= {g_{i}^{T}} g_{i}. $$

At last, we have

$$\begin{array}{@{}rcl@{}} \nabla^{2} \varphi(\|G_{i} u^{*}\|) & = & \frac{\varphi^{\prime\prime}(\|G_{i} u^{*}\|)}{\|G_{i} u^{*}\|^{2}}{g_{i}^{T}}\!G_{i}u^{*}({g_{i}^{T}}G_{i}u^{*})^{T} - \frac{\varphi^{\prime}(\|G_{i} u^{*}\|)}{\|G_{i} u^{*}\|^{3}}{g_{i}^{T}}\!G_{i}u^{*}({g_{i}^{T}}G_{i}u^{*})^{T} \\ && + \frac{\varphi^{\prime}(\|G_{i} u^{*}\|)}{\|G_{i} u^{*}\|}{g_{i}^{T}}g_{i}. \end{array} $$

Therefore,

$$\begin{array}{lll} \nabla^{2} \mathcal{F}(v^{*}) =& \lambda {A_{1}^{T}}A_{1} + \sum\limits_{i\in I_{1} \cup \partial B}\frac{\varphi^{\prime\prime}(\|G_{i} u^{*}\|)}{\|G_{i} u^{*}\|^{2}}{g_{i}^{T}}G_{i}u^{*}({g_{i}^{T}}G_{i}u^{*})^{T} \\ & -\sum\limits_{i\in I_{1} \cup \partial B}\frac{\varphi^{\prime}(\|G_{i} u^{*}\|)}{\|G_{i} u^{*}\|^{3}}{g_{i}^{T}}G_{i}u^{*}({g_{i}^{T}}G_{i}u^{*})^{T} \\ & + \sum\limits_{i\in I_{1} \cup \partial B}\frac{\varphi^{\prime}(\|G_{i} u^{*}\|)}{\|G_{i} u^{*}\|}{g_{i}^{T}}g_{i}. \end{array} $$

For any vK(I0), any iI1B, we have

$$\begin{array}{@{}rcl@{}} ({g_{i}^{T}}G_{i}u^{*})^{T}v & = \langle G_{i}u^{*},g_{i}v \rangle, \\ v^{T} {g_{i}^{T}} g_{i} v & = \|g_{i} v\|^{2}, \\ v^{T} {G_{i}^{T}} G_{i} v & = \|G_{i} v\|^{2}. \end{array} $$

It follows that

$$\begin{array}{@{}rcl@{}} v^{T} \nabla^{2} \mathcal{F}(v^{*})v &= & \lambda \|A_{1}v\|^{2}+ \sum\limits_{i \in I_{1} \cup \partial B} \frac{\varphi^{\prime\prime}(\|G_{i} u^{*}\|)}{\|G_{i} u^{*}\|^{2}} \langle G_{i} u^{*}, g_{i} v\rangle^{2} \\ && +\sum\limits_{i \in I_{1} \cup \partial B}\frac{\varphi^{\prime}(\|G_{i} u^{*}\|)}{\|G_{i} u^{*}\|^{3}}\left( \|G_{i} u^{*}\|^{2} \|g_{i}v\|^{2} - \langle G_{i} u^{*}, g_{i} v\rangle^{2} \right). \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Wu, C. On the discontinuity of images recovered by noncovex nonsmooth regularized isotropic models with box constraints. Adv Comput Math 45, 589–610 (2019). https://doi.org/10.1007/s10444-018-9629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9629-1

Keywords

Mathematics Subject Classification (2010)

Navigation