Skip to main content
Log in

A non-convex regularization approach for compressive sensing

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Compressive sensing (CS) aims at reconstructing high dimensional data from a small number of samples or measurements. In this paper, we propose the minimization of a non-convex functional for the solution of the CS problem. The considered functional incorporates information on the self-similarity of the image by measuring the rank of some appropriately constructed matrices of fairly small dimensions. However, since the rank minimization is a NP hard problem, we consider, as a surrogate function for the rank, a non-convex, but smooth function. We provide a theoretical analysis of the proposed functional and develop an iterative algorithm to compute one of its stationary points. We prove the convergence of such algorithm and show, with some selected numerical experiments, that the proposed approach achieves good performances, even when compared with the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adcock, B., Hansen, A.C.: Generalized sampling and infinite-dimensional compressed sensing. Found. Comput. Math. 16(5), 1263–1323 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adcock, B., Hansen, A.C., Poon, C., Roman, B.: Breaking the Coherence Barrier: a New Theory for Compressed Sensing. In: Forum of Mathematics, Sigma, Vol. 5. Cambridge University Press (2017)

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becker, S., Bobin, J., Candes, E.J.: Nesta: A fast and accurate first-order method for sparse recovery. SIAM Journal on Imaging Sciences 4(1), 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  6. Cai, J., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, J.F., Osher, S., Shen, Z.: Linearized bregman iterations for frame-based image deblurring. SIAM Journal on Imaging Sciences 2(1), 226–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, J.F., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale modeling & simulation 8(2), 337–369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candes, E., Romberg, J.: 1-Magic: Recovery of sparse signals via convex programming. https://statweb.stanford.edu/~candes/l1magic/

  10. Candes, E.J., Plan, Y.: A probabilistic and ripless theory of compressed sensing. IEEE Trans. Inf. Theory 57(11), 7235–7254 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters 14(10), 707–710 (2007)

    Article  Google Scholar 

  14. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  15. Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, W., Shi, G., Li, X., Ma, Y., Huang, F.: Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process. 23(8), 3618–3632 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems, vol. 375 Springer Science & Business Media (1996)

  19. Fan, Y.R., Huang, T.Z., Liu, J., Zhao, X.L.: Compressive sensing via nonlocal smoothed rank function. PloS one 11(9), e0162,041 (2016)

    Article  Google Scholar 

  20. Gehm, M., John, R., Brady, D., Willett, R., Schulz, T.: Single-shot compressive spectral imaging with a dual-disperser architecture. Optics Express 15 (21), 14,013–14,027 (2007)

    Article  Google Scholar 

  21. Grippof, L., Sciandrone, M.: Globally convergent block-coordinate techniques for unconstrained optimization. Optimization methods and software 10(4), 587–637 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

  23. He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313–340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu, Y., Ongie, G., Ramani, S., Jacob, M.: Generalized higher degree total variation (HDTV) regularization. IEEE Trans. Image Process. 23(6), 2423–2435 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, G., Lanza, A., Morigi, S., Reichel, L., Sgallari, F.: Majorization–minimization generalized krylov subspace methods for p q optimization applied to image restoration. BIT Numer. Math. 57(2), 351–378 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  27. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  28. Ma, T.H., Huang, T.Z., Zhao, X.L.: Group-based image decomposition using 3-D cartoon and texture priors. Inform. Sci. 328, 510–527 (2016)

    Article  Google Scholar 

  29. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local Sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2272–2279 (2009), https://doi.org/10.1109/ICCV.2009.5459452

  30. Sarvotham, S., Baron, D., Wakin, M., Duarte, M.F., Baraniuk, R.G.: Distributed compressed sensing of jointly sparse signals. In: Asilomar Conference on Signals, Systems, and Computers, pp. 1537–1541 (2005)

  31. Takhar, D., Laska, J.N., Wakin, M.B., Duarte, M.F., Baron, D., Sarvotham, S., Kelly, K.F., Baraniuk, R.G.: A new compressive imaging camera architecture using optical-domain compression. In: International Society for Optics and Photonics Electronic Imaging 2006, pp. 606,509–606,509 (2006)

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  33. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences 3(3), 253–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the editor and the anonymous referees for their insightful comments that greatly improved the readability and the general quality of this paper.

Funding

The work of the first and the fourth authors is supported by 973 Program (2013CB329404), NSFC (61370147). The work of the second and the third authors is supported in part by MIUR - PRIN 2012 N. 2012MTE38N and by a grant of the group GNCS of INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Buccini.

Additional information

Communicated by: Gitta Kutyniok

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, YR., Buccini, A., Donatelli, M. et al. A non-convex regularization approach for compressive sensing. Adv Comput Math 45, 563–588 (2019). https://doi.org/10.1007/s10444-018-9627-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9627-3

Keywords

Mathematics Subject Classification (2010)

Navigation