Variational integrators for orbital problems using frequency estimation

  • Odysseas Kosmas
  • Sigrid Leyendecker


In this work, we present a new derivation of higher order variational integration methods that exploit the phase lag properties for numerical integrations of systems with oscillatory solutions. More specifically, for the derivation of these integrators, the action integral along any curve segment is defined using a discrete Lagrangian that depends on the endpoints of the segment and on a number of intermediate points of interpolation. High order integrators are then obtained by writing down the discrete Lagrangian at any time interval as a weighted sum of the Lagrangians corresponding to a set of the chosen intermediate points. The respective positions and velocities are interpolated using trigonometric functions. The methods derived this way depend on a frequency, which in general needs to be accurately estimated. The new methods, which improve the phase lag characteristics by re-estimating the frequency at every time step, are presented and tested on the general N-body problem as numerical examples.


Variational integrators Discrete variational mechanics Highly oscillatory problems Phase lag analysis General N-body problem 

Mathematics Subject Classification (2010)

49Mxx 65Kxx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Engquist, B., Fokas, A., Hairer, E., Iserles, A.: Highly Oscillatory Problems. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Wendlandt, J., Marsden, J.: Mechanical integrators derived from a discrete variational principle. Phys. D 106, 223–246 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kane, C., Marsden, J., Ortiz, M.: Symplectic-energy-momentum preserving variational integrators. J. Math. Phys. 40, 3353–3371 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Marsden, J., West, M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357–514 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the störmer-verlet method. Acta Numerica 12, 399–450 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics, Cambridge (2004)zbMATHGoogle Scholar
  7. 7.
    Ober-Blöbaum, S., Saake, N.: Construction and analysis of higher order Galerkin variational integrators. Adv. Comput. Math. 41, 955–986 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Campos, C.M., Ober-Blöbaum, S., Trélat, E.: High order variational integrators in the optimal control of mechanical systems. Discrete Contin. Dyn. Syst. A 35, 4193–4223 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ober-Blöbaum, S.: Galerkin variational integrators and modified symplectic Runge-Kutta methods. IMA J. Numer. Anal. 37, 375–406 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Brusca, L., Nigro, L.: A one-step method for direct integration of structural dynamic equations. Internat. J. Numer. Methods Engnr. 15, 685–699 (1980)CrossRefzbMATHGoogle Scholar
  11. 11.
    Van de Vyver, H.: A fourth-order symplectic exponentially fitted integrator. Comput. Phys. Commun. 174, 255–262 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Num. Math. 19, 65–75 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ixaru, L.Gr., Vanden Berghe, G.: Exponential Fitting. Kluwer Academic Publishers, Dordrecht (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Cappiello, M., Nicola, F.: Regularity and decay of solutions of nonlinear harmonic oscillators. Adv. Math. 229, 1266–1299 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kosmas, O.T., Vlachos, D.S.: Phase-fitted discrete Lagrangian integrators. Comput. Phys. Commun. 181, 562–568 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kosmas, O.T., Leyendecker, S.: Phase lag analysis of variational integrators using interpolation techniques. PAMM Proc. Appl. Math. Mech. 12, 677–678 (2012)CrossRefGoogle Scholar
  18. 18.
    Stern, A., Grinspun, E.: Implicit-explicit integration of highly oscillatory problems. SIAM Multiscale Model. Simul. 7, 1779–1794 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Leok, M., Zhang, J.: Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31, 1497–1532 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. IMA J. Appl. Math. 18, 189–202 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: the Art of Scientific Computing. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  22. 22.
    Kosmas, O.T., Vlachos, D.S.: Local path fitting: a new approach to variational integrators. J. Comput. Appl. Math. 33, 2632–2642 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kosmas, O.T.: Charged particle in an electromagnetic field using variational integrators. ICNAAM Numer. Anal. Appl. Math. 1389, 1927–1931 (2011)Google Scholar
  24. 24.
    Kosmas, O.T., Leyendecker, S.: Analysis of higher order phase fitted variational integrators. Adv. Comput. Math. 42, 605–619 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kosmas, O.T., Leyendecker, S.: Stability analysis of high order phase fitted variational integrators. In: Proceedings of WCCM XI - ECCM V - ECFD VI, vol. 1389, pp. 548–556 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Modelling and Simulation Centre, MACEUniversity of ManchesterManchesterUK
  2. 2.Chair of Applied DynamicsUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations