Skip to main content
Log in

Left Lie reduction for curves in homogeneous spaces

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let H be a closed subgroup of a connected finite-dimensional Lie group G, where the canonical projection π : GG/H is a Riemannian submersion with respect to a bi-invariant Riemannian metric on G. Given a C curve x : [a, b] → G/H, let \(\tilde {x}:[a,b]\rightarrow G\) be the horizontal lifting of x with \(\tilde {x}(a)=e\), where e denotes the identity of G. When (G, H) is a Riemannian symmetric pair, we prove that the left Lie reduction\(V(t):=\tilde x(t)^{-1}\dot {\tilde x}(t)\) of \(\dot {\tilde x}(t)\) for t ∈ [a, b] can be identified with the parallel pullbackP(t) of the velocity vector \(\dot {x}(t)\) from x(t) to x(a) along x. Then left Lie reductions are used to investigate Riemannian cubics, Riemannian cubics in tension and elastica in homogeneous spaces G/H. Simplifications of reduced equations are found when (G, H) is a Riemannian symmetric pair. These equations are compared with equations known for curves in Lie groups, focusing on the special case of Riemannian cubics in the 3-dimensional unit sphere S3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Noakes, L., Popiel, T.: Geometry for robot path planning. Robotica 25 (06), 691–701 (2007)

    Article  Google Scholar 

  2. Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces. IMA J. Math. Control. Inf. 6(4), 465–473 (1989)

    Article  MathSciNet  Google Scholar 

  3. Crouch, P., Leite, F.S.: The dynamic interpolation problem: on Riemannian manifolds, Lie groups, and symmetric spaces. J. Dyn. Control. Syst. 1(2), 177–202 (1995)

    Article  MathSciNet  Google Scholar 

  4. Casciola, G., Romani, L.: Rational interpolants with tension parameters. Curve and surface design. 41–50 (2003)

  5. Chern, S.S., Chen, W., Lam, K.S.: Lectures on differential geometry[M]. World Scientific Publishing Company, Singapore (1999)

    Book  Google Scholar 

  6. Gregory, J.A., Sarfraz, M.: A rational cubic spline with tension. Comput. Aided Geom. Des. 7(1-4), 1–13 (1990)

    Article  MathSciNet  Google Scholar 

  7. Mumford, D.: Elastica and computer vision//Algebraic geometry and its applications, pp. 491–506. Springer, New York (1994)

    MATH  Google Scholar 

  8. Swaddle, M., Noakes, L., Smallbone, H., et al.: Generating three-qubit quantum circuits with neural networks[J]. Phys. Lett. A 381(39), 3391–3395 (2017)

    Article  MathSciNet  Google Scholar 

  9. Nomizu, K.: Invariant affine connections on homogeneous spaces. Am. J. Math. 76(1), 33–65 (1954)

    Article  MathSciNet  Google Scholar 

  10. do Carmo Valero, M.P.: Riemannian geometry (1992)

  11. Gabriel, S.A., Kajiya, J.T.: Spline interpolation in curved manifolds. Unpublished manuscript (1985)

  12. Camarinha, M., Leite, F.S., Crouch, P.: Splines of class C k on non-Euclidean spaces. IMA J. Math. Control. Inf. 12(4), 399–410 (1995)

    Article  Google Scholar 

  13. Crouch, P., Kun, G., Leite, F S.: The De Casteljau algorithm on Lie groups and spheres. J. Dyn. Control. Syst. 5(3), 397–429 (1999)

    Article  MathSciNet  Google Scholar 

  14. Noakes, L.: Null cubics and Lie quadratics. J. Math. Phys. 44, 1436–1448 (2003)

    Article  MathSciNet  Google Scholar 

  15. Camarinha, M.: The geometry of cubic polynomials on Riemannian manifolds. PhD thesis in Pure Mathematics. University of Coimbra, Portugal (1996)

    Google Scholar 

  16. O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13(4), 459–469 (1966)

    Article  MathSciNet  Google Scholar 

  17. O’Neill B.: Submersions and geodesics. Duke Math. J. 34(363373), 29 (1967)

    MathSciNet  MATH  Google Scholar 

  18. Popiel, T., Noakes, L.: Elastica in S O(3). J. Aust. Math. Soc. 83(01), 105–124 (2007)

    Article  MathSciNet  Google Scholar 

  19. Noakes, L.: Non-null Lie quadratics in E 3. J. Math. Phys. 45(11), 4334–4351 (2004)

    Article  MathSciNet  Google Scholar 

  20. Noakes, L.: Duality and Riemannian cubics. Adv. Comput. Math. 25(1-3), 195–209 (2006)

    Article  MathSciNet  Google Scholar 

  21. Silva Leite, F., Camarinha, M., Crouch, P.: Two higher order variational problems on Riemannian manifolds and the interpolation problem//Proceedings of the 3rd European control conference, Rome. 3269–3274 (1995)

  22. Leite, F.S., Camarinha, M., Crouch, P.: Elastic curves as solutions of Riemannian and sub-Riemannian control problems. Math. Control Signals Syst. 13(2), 140–155 (2000)

    Article  MathSciNet  Google Scholar 

  23. Brunnett, G., Crouch, P E.: Elastic curves on the sphere. Adv. Comput. Math. 2(1), 23–40 (1994)

    Article  MathSciNet  Google Scholar 

  24. Brunnett, G., Wendt, J.: Elastic splines with tension control. Mathematical Methods for Curves and Surfaces 11, 3340 (1998)

    MATH  Google Scholar 

  25. Noakes, L., Popiel, T.: Null Riemannian cubics in tension in S O(3). IMA J. Math. Control. Inf. 22(4), 477–488 (2005)

    Article  MathSciNet  Google Scholar 

  26. Noakes, L., Popiel, T.: Quadratures and cubics in S O(3) and S O(1, 2). IMA J. Math. Control. Inf. 23(4), 463–473 (2006)

    Article  MathSciNet  Google Scholar 

  27. Kibble, T W B.: Geometrization of quantum mechanics. Commun. Math. Phys. 65(2), 189–201 (1979)

    Article  MathSciNet  Google Scholar 

  28. Jurdjevic, V.: Geometric control theory. Cambridge university press, Cambridge (1997)

    MATH  Google Scholar 

  29. Popiel, T., Noakes, L.: Higher order geodesics in Lie groups. Math. Control Signals Syst. 19(3), 235 (2007)

    Article  MathSciNet  Google Scholar 

  30. Popiel, T.: Geometrically-defined curves in Riemannian manifolds. University of Western Australia, Crawley (2007)

    MATH  Google Scholar 

  31. Pauley, M.: Cubics, curvature and asymptotics. University of Western Australia, Crawley (2011)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciation to the editor and anonymous reviewers for their helpful comments and suggestions which proved the presentation of this paper. The first author would like to express sincere thanks to China Scholarship Council (CSC) and The university of Western Australia (UWA) for finical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyle Noakes.

Additional information

Communicated by: Tomas Sauer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, E., Noakes, L. Left Lie reduction for curves in homogeneous spaces. Adv Comput Math 44, 1673–1686 (2018). https://doi.org/10.1007/s10444-018-9601-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9601-0

Keywords

Mathematics Subject Classification 2010

Navigation