Theoretical investigations of the new Cokriging method for variable-fidelity surrogate modeling

Well-posedness and maximum likelihood training
Article
  • 36 Downloads

Abstract

Cokriging is a variable-fidelity surrogate modeling technique which emulates a target process based on the spatial correlation of sampled data of different levels of fidelity. In this work, we address two theoretical questions associated with the so-called new Cokriging method for variable-fidelity modeling:
  1. (1)

    A mandatory requirement for the well-posedness of the Cokriging emulator is the positive definiteness of the associated Cokriging correlation matrix. Spatial correlations are usually modeled by positive definite correlation kernels, which are guaranteed to yield positive definite correlation matrices for mutually distinct sample points. However, in applications, low-fidelity information is often available at high-fidelity sample points and the Cokriging predictor may benefit from the additional information provided by such an inclusive sampling. We investigate the positive definiteness of the Cokriging covariance matrix in both of the aforementioned cases and derive sufficient conditions for the well-posedness of the Cokriging predictor.

     
  2. (2)

    The approximation quality of the Cokriging predictor is highly dependent on a number of model- and hyper-parameters. These parameters are determined by the method of maximum likelihood estimation. For standard Kriging, closed-form optima of the model parameters along hyper-parameter profile lines are known. Yet, these do not readily transfer to the setting of Cokriging, since additional parameters arise, which exhibit a mutual dependence. In previous work, this obstacle was tackled via a numerical optimization. Here, we derive closed-form optima for all Cokriging model parameters along hyper-parameter profile lines. The findings are illustrated by numerical experiments.

     

Keywords

Cokriging Surrogate modeling Variable-fidelity methods Multifidelity methods Response surface Maximum likelihood estimation Covariance matrix 

Mathematics Subject Classification 2010

60G15 62M20 62K20 65C20 62P30 65D15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blazek, J.: Computational Fluid Dynamics: Principles and Applications, 1St Edn. Elsevier, Amsterdam (2001)MATHGoogle Scholar
  2. 2.
    Courrier, N., Boucard, P.A., Soulier, B.: Variable-fidelity modeling of structural analysis of assemblies. J. Glob. Optim. 64(3), 577–613 (2016).  https://doi.org/10.1007/s10898-015-0345-9MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Fernández-Godino, M.G., Park, C., Kim, N.H., Haftka, R.T.: Review of multi-fidelity models. arXiv:1609.07196v3, 1–46 (2017)
  4. 4.
    Forrester, A., Sóbester, A., Keane, A.: Engineering Design Via Surrogate Modelling: A Practical Guide. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  5. 5.
    Forrester, A.I., Bressloff, N.W., Keane, A.J.: Optimization using surrogate models and partially converged computational fluid dynamics simulations. Proceedings of the Royal Society A: Mathematical. Phys. Eng. Sci. 462(2071), 2177–2204 (2006).  https://doi.org/10.1098/rspa.2006.1679CrossRefMATHGoogle Scholar
  6. 6.
    Gallier, J.: Geometric Methods and Applications, vol. 38. Springer, New York (2011).  https://doi.org/10.1007/978-1-4419-9961-0CrossRefMATHGoogle Scholar
  7. 7.
    Han, Z.H., Görtz, S.: Hierarchical kriging model for variable-fidelity surrogate modeling. AIAA J. 50(9), 1885–1896 (2012).  https://doi.org/10.2514/1.J051354CrossRefGoogle Scholar
  8. 8.
    Han, Z.H., Görtz, S., Zimmermann, R.: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Aerosp. Sci. Technol. 25(1), 177–189 (2013).  https://doi.org/10.1016/j.ast.2012.01.006CrossRefGoogle Scholar
  9. 9.
    Han, Z.H., Zimmermann, Görtz, S.: Alternative cokriging model for variable-fidelity surrogate modeling. AIAA J. 50(5), 1205–1210 (2012).  https://doi.org/10.2514/1.J051243CrossRefGoogle Scholar
  10. 10.
    Han, Z.H., Zimmermann, R., Goretz, S.: A New Cokriging Method for Variable-Fidelity Surrogate Modeling of Aerodynamic Data. In: 48Th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics (2010).  https://doi.org/10.2514/6.2010-1225
  11. 11.
    Journel, A.G., Huijbregts, C.J.: Mining Geostatistics. Academic Press, London (1978)Google Scholar
  12. 12.
    Kennedy, M.C., O’Hagan, A.: Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1), 1–13 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Koehler, J.R., Owen, A.B.: Computer experiments. In: Ghosh, S., Rao, C.R. (eds.) Design and Analysis of Experiments, Handbook of Statistics, vol. 13, pp. 261–308. Elsevier, Amsterdam (1996)Google Scholar
  14. 14.
    Krige, D.: A statistical approach to some basic mine valuation problems on the witwatersrand. J Chemical, Metallurgical Mining Eng Soc South Africa 52(6), 119–139 (1951)Google Scholar
  15. 15.
    Lophaven, S., Nielsen, H.B., Søndergaard, J.: Dace - a MATLAB Kriging Toolbox, Version 2.0S. Technical Report IMM-TR-2002-12, Technical University of Denmark, Lyngby, Denmark (2002)Google Scholar
  16. 16.
    Matheron, G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963)CrossRefGoogle Scholar
  17. 17.
    Myers, D.E.: Kriging, cokriging, radial basis functions and the role of positive definiteness. Comput. Math. Appl. 24(12), 139–148 (1992).  https://doi.org/10.1016/0898-1221(92)90176-IMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    OpenCFD Ltd (ESI Group): OpenFOAM—the open source cfd toolbox. http://www.openfoam.com. Accessed December 5 2016 (2016)
  19. 19.
    Panik, M.: Regression Modeling: Methods, Theory, and Computation with SAS. CRC Press, Boca Raton (2009). https://books.google.dk/books?id=9QfMBQAAQBAJCrossRefMATHGoogle Scholar
  20. 20.
    Qian, P.Z.G., Wu, C.F.J.: Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50(2), 192–204 (2008).  https://doi.org/10.1198/004017008000000082MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)MATHGoogle Scholar
  22. 22.
    Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989).  https://doi.org/10.1214/ss/1177012413MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Santner, T.J., Williams, B., Notz, W.: Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, New York (2003)CrossRefMATHGoogle Scholar
  24. 24.
    Schoenberg, I.J.: Metric spaces and completely monotone functions. Ann. Math. 39(4), 811 (1938). 10.2307/1968466MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Zimmermann, R., Han, Z.-H.: Simplified cross-correlation estimation for Multi-Fidelity surrogate cokriging models. Adv. Appl. Math. Sci. 7(2), 181–202 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Computational Mathematics, AG NumerikTU BraunschweigBraunschweigGermany
  2. 2.Institut for Matematik og DatalogiSyddansk UniversitetOdenseDenmark

Personalised recommendations