Percolation Threshold of the Thermal, Electrical and Optical Properties of Carbonyl-Iron Microcomposites


Composites made up of microparticles embedded in a polymeric matrix have attracted increasing attention due to the possibility of tailoring their physical properties by adding the adequate quantity of fillers. As the concentration of these fillers increases, their connectivity changes drastically at a given threshold and therefore the electrical, thermal and optical properties of these composites are expected to exhibit a percolation effect. In this work, the thermal and electrical conductivities along with the emissivity of composites composed of carbonyl-iron microparticles randomly distributed in a polyester resin matrix are measured, for volume fractions ranging from 0 to 0.55. It is shown that both the thermal and electrical conductivities increase with the particles’ concentration, such that their percolation threshold appears at volume fractions of 0.46 and 0.38, respectively. The emissivity, on the other hand, decreases as the fillers’ concentration increases, such that it exhibits a substantial decay at a volume fraction of 0.41. The percolation threshold of the emissivity is thus higher than that of the thermal conductivity, but lower than the electrical conductivity one. This dispersion on the percolation concentration is justified by the different physical mechanisms required to activate the electrical, thermal, and optical responses of the considered composites. The obtained results thus show that the percolation phenomenon can efficiently be used to enhance or reduce the physical properties of particulate composites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Zweben, C.: Advances in composite materials for thermal management in electronic packaging. JOM. 50, 47–51 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    Kim, J., Yim, B.S., Kim, J.M., Kim, J.: The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs). Microelectron. Reliab. 52, 595–602 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Li, C., Liang, T., Lu, W., Tang, C., Hu, X., Cao, M., Liang, J.: Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Compos. Sci. Technol. 64, 2089–2096 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    Zhang, X., Ma, Y., Zhao, C., Yang, W.: High dielectric constant and low dielectric loss hybrid nanocomposites fabricated with ferroelectric polymer matrix and BaTiO 3 nanofibers modified with perfluoroalkylsilane. Appl. Surf. Sci. 305, 531–538 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Wang, Y., Hou, Y., Deng, Y.: Effects of interfaces between adjacent layers on breakdown strength and energy density in sandwich-structured polymer composites. Compos. Sci. Technol. 145, 71–77 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Huang, H., Liu, C.H., Wu, Y., Fan, S.: Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17, 1652–1656 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    Vadivelu, M.A., Kumar, C.R., Joshi, G.M.: Polymer composites for thermal management: a review. Compos. Interfaces. 23, 847–872 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Prasher, R.: Thermal interface materials: Historical perspective, status, and future directions. Proc. IEEE. 94, 1571–1586 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Fei, Y., Chen, F., Fang, W., Xu, L., Ruan, S., Liu, X., Zhong, M., Kuang, T.: High-strength, flexible and cycling-stable piezo-resistive polymeric foams derived from thermoplastic polyurethane and multi-wall carbon nanotubes. Compos. B. Eng. 199, 108279 (2020).

    CAS  Article  Google Scholar 

  10. 10.

    Ju, J., Kuang, T., Ke, X., Zeng, M., Chen, Z., Zhang, S., Peng, X.: Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Compos. Sci. Technol. 193, 108116 (2020).

    CAS  Article  Google Scholar 

  11. 11.

    Kuang, T., Chang, L., Chen, F., Sheng, Y., Fu, D., Peng, X.: Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon. 105, 305–313 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Lebovka, N., Lisunova, M., Mamunya, Y.P., Vygornitskii, N.: Scaling in percolation behaviour in conductive-insulating composites with particles of different size. J. Phys. D. Appl. Phys. 39, 2264–2271 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    Lee, G.-W., Park, M., Kim, J., Lee, J.I., Yoon, H.G.: Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos. Part A Appl. Sci. Manuf. 37, 727–734 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Clerc, J.P., Giraud, G., Roussenq, J., Blanc, R., Carton, J.P., Guyon, E., Ottavi, H., Stauffer, D.: La percolation. Ann. Phys. (Paris) 8, 3–105 (1983).

    CAS  Article  Google Scholar 

  15. 15.

    Vigolo, B.: An experimental approach to the percolation of sticky nanotubes. Science. 309, 920–923 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    Kargar, F., Barani, Z., Salgado, R., Debnath, B., Lewis, J.S., Aytan, E., Lake, R.K., Balandin, A.A.: Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces. 10, 37555–37565 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Kim, B., Pfeifer, S., Park, S. H., Bandaru, P.R.: The experimental determination of the onset of electrical and thermal conductivity percolation thresholds in carbon nanotube-polymer composites. MRS. Proc. 1312 (2011).

  18. 18.

    Yin, R., Zhang, Y., Zhao, W., Huang, X., Li, X., Qian, L.: Graphene platelets/aluminium nitride metacomposites with double percolation property of thermal and electrical conductivity. J. Eur. Ceram. Soc. 38, 4701–4706 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Kwon, S.Y., Kwon, I.M., Kim, Y.-G., Lee, S., Seo, Y.-S.: A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena. Carbon N. Y. 55, 285–290 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Sun, K., Zhang, Z.D., Qian, L., Dang, F., Zhang, X.H., Fan, R.H.: Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites. Appl. Phys. Lett. 108, 061903 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Shenogina, N., Shenogin, S., Xue, L., Keblinski, P.: On the lack of thermal percolation in carbon nanotube composites. Appl. Phys. Lett. 87, 133106 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., Hyun, J.K., Johnson, A.T., Fischer, J.E.: Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80, 2767–2769 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    Garboczi, E.J., Snyder, K.A., Douglas, J.F., Thorpe, M.F.: Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E. 52, 819–828 (1995).

    CAS  Article  Google Scholar 

  24. 24.

    Balberg, I., Anderson, C.H., Alexander, S., Wagner, N.: Excluded volume and its relation to the onset of percolation. Phys. Rev. B. 30, 3933–3943 (1984).

    Article  Google Scholar 

  25. 25.

    Kim, B.-W., Park, S.-H., Kapadia, R.S., Bandaru, P.R.: Evidence of percolation related power law behavior in the thermal conductivity of nanotube/polymer composites. Appl. Phys. Lett. 102, 243105 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Tjong, S.C., Liang, G.D., Bao, S.P.: Electrical properties of low-density polyethylene/ZnO nanocomposites: The effect of thermal treatments. J. Appl. Polym. Sci. 102, 1436–1444 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    Wang, Y., Shan, J.W., Weng, G.J.: Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118, 065101 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Pech-May, N.W., Vales-Pinzn, C., Vega-Flick, A., Cifuentes, Oleaga, A., Salazar, A., Alvarado-Gil, J.J.: Study of the thermal properties of polyester composites loaded with oriented carbon nanofibers using the front-face flash method. Polym. Test. 50, 255–261 (2016).

  29. 29.

    Pech-May, N.W., Cifuentes., Mendioroz, A., Oleaga, A., Salazar, A.: Simultaneous measurement of thermal diffusivity and effusivity of solids using the flash technique in the front-face configuration. Meas. Sci. Technol. 26, 085017 (2015).

  30. 30.

    Abate, J., Whitt, W.: A Unified Framework for Numerically Inverting Laplace Transforms. INFORMS J. Comput. 18, 408–421 (2006).

    Article  Google Scholar 

  31. 31.

    Marquardt, D.W.: An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963).

    Article  Google Scholar 

  32. 32.

    Forero-Sandoval, I.Y., Pech-May, N.W., Alvarado-Gil, J.J.: Measurement of the thermal transport properties of liquids using the front-face flash method. Infrared Phys. Technol. 93, 9–15 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Rahaman, M., Aldalbahi, A., Govindasami, P., Khanam, N., Bhandari, S., Feng, P., Altalhi, T.: A new insight in determining the percolation threshold of electrical conductivity for extrinsically conducting polymer composites through different sigmoidal models. Polymers (Basel). 9, 527 (2017).

  34. 34.

    Merzouki, A., Haddaoui, N.: Electrical Conductivity Modeling of Polypropylene Composites Filled with Carbon Black and Acetylene Black. ISRN Polym. Sci. 2012, 1–7 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Yaman, K., Taga.: Thermal and electrical conductivity of unsaturated polyester resin filled with copper filler composites. Int. J. Polym. Sci. 2018, 1–10 (2018).

  36. 36.

    Genetti, W.B., Yuan, W.L., Grady, B.P., Orear, E.A., Lai, C.L., Glatzhofer, D.T.: Polymer matrix composites: Conductivity enhancement through polypyrrole coating of nickel flake. J. Mater. Sci. 33, 3085–3093 (1998).

    CAS  Article  Google Scholar 

  37. 37.

    Marsden, A.J., Papageorgiou, D.G., Valls, C., Liscio, A., Palermo, V., Bissett, M.A., Young, R.J., Kinloch, I.A.: Electrical percolation in graphene–polymer composites. 2D Mater. 5, 032003 (2018).

  38. 38.

    Ukshe, A., Glukhov, A., Dobrovolsky, Y.: Percolation model for conductivity of composites with segregation of small conductive particles on the grain boundaries. J. Mater. Sci. 55, 6581–6587 (2020).

    CAS  Article  Google Scholar 

  39. 39.

    Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32, 1679–1684 (1961).

    CAS  Article  Google Scholar 

  40. 40.

    Sofian, N.M., Rusu, M., Neagu, R., Neagu, E.: Metal powder-filled polyethylene composites. V. Thermal properties. J. Thermoplast. Compos. Mater. 14, 20–33 (2001).

  41. 41.

    Rusu, M., Sofian, N., Rusu, D., Neagu, E., Neagu, R.: Properties of iron powder filled high density polyethylene. J. Polym. Eng. 21, 469–487 (2001).

    CAS  Article  Google Scholar 

  42. 42.

    Pech-May, N., Vales-Pinzon, C., Vega-Flick, A., Oleaga, A., Salazar, A., Yanez-Limon, J., Alvarado-Gil, J.: Heat transport in epoxy and polyester carbonyl iron microcomposites: The effect of concentration and temperature. J. Compos. Mater. 52, 1331–1338 (2018).

    CAS  Article  Google Scholar 

  43. 43.

    Bevington, P., Robinson, D.K.: Data reduction and error analysis for the physical sciences. McGraw-Hill Higher Education, New York (2002)

    Google Scholar 

  44. 44.

    Zhang, G., Xia, Y., Wang, H., Tao, Y., Tao, G., Tu, S., Wu, H.: A percolation model of thermal conductivity for filled polymer composites. J. Compos. Mater. 44, 963–970 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    Almond, D.P., Patel, P.M.: Photothermal science and techniques. vol 10. Springer Science & Business Media (1996)

  46. 46.

    Elimat, Z.M., AL-Aqrabawi, F.S., Hazeem, T.A., Ramadin, Y., Zihlif, A.M.: Effect of iron particle size and concentration on thermal conductivity of iron/polystyrene composites. Int. J. Thermophys. 34, 2009–2018 (2013).

  47. 47.

    Boudenne, A., Ibos, L., Fois, M., Gehin, E., Majeste, J.C.: Thermophysical properties of polypropylene/aluminum composites. J. Polym. Sci. Part. B. Polym. Phys. 42, 722–732 (2004).

    CAS  Article  Google Scholar 

  48. 48.

    Ramirez-Rincon, J.A., Ares-Muzio, O., Macias, J.D., Estrella-Gutierrez, M.A., Lizama-Tzec, F.I., Oskam, G., Alvarado-Gil, J.J.: On the use of photothermal techniques for the characterization of solar-selective coatings. Appl. Phys. A. 124, 252 (2018).

    CAS  Article  Google Scholar 

  49. 49.

    Houtz, D.A., Gu, D.: A measurement technique for infrared emissivity of epoxy-based microwave absorbing materials. IEEE Geosci. Remote Sens. Lett. 15, 48–52 (2018).

    Article  Google Scholar 

  50. 50.

    Hu, C., Xu, G., Shen, X., Shao, C., Yan, X.: The epoxy-siloxane/Al composite coatings with low infrared emissivity for high temperature applications. Appl. Surf. Sci. 256, 3459–3463 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    Wu, G., Yu, D.: Preparation and characterization of a new low infrared-emissivity coating based on modified aluminum. Prog. Org. Coatings. 76, 107–112 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Yu, H., Xu, G., Shen, X., Yan, X., Cheng, C.: Low infrared emissivity of polyurethane/Cu composite coatings. Appl. Surf. Sci. 255, 6077–6081 (2009).

    CAS  Article  Google Scholar 

  53. 53.

    Sherman, R.D., Middleman, L.M., Jacobs, S.M.: Electron transport processes in conductor-filled polymers. Polym. Eng. Sci. 23, 36–46 (1983).

    Article  Google Scholar 

  54. 54.

    Albers, W.M., Karttunen, M., Wikstrm, L., Vilkman, T.: Effects of compression and filler particle coating on the electrical conductivity of thermoplastic elastomer composites. J. Electron. Mater. 42, 2983–2989 (2013).

    CAS  Article  Google Scholar 

  55. 55.

    Balberg, I.: Tunneling and nonuniversal conductivity in composite materials. Phys. Rev. Lett. 59, 1305–1308 (1987).

    CAS  Article  Google Scholar 

  56. 56.

    Huang, C., Qian, X., Yang, R.: Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Reports. 132, 1–22 (2018).

    Article  Google Scholar 

  57. 57.

    Hida, S., Hori, T., Shiga, T., Elliott, J., Shiomi, J.: Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. Int. J. Heat Mass Transf. 67, 1024–1029 (2013).

    CAS  Article  Google Scholar 

  58. 58.

    Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M.: A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys. 115, 193706 (2014).

    CAS  Article  Google Scholar 

  59. 59.

    Shi, Y.D., Li, J., Tan, Y.J., Chen, Y.F., Wang, M.: Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites. Compos. Sci. Technol. 170, 70–76 (2019).

    CAS  Article  Google Scholar 

Download references


This work was partially supported by projects SRE-AMEXCID-2016-1-278320 and Cinvestav Scientific Research and Technological Development Fund No. 98. F. C-A acknowledges the postdoctoral scholarship obtained from the project SEP-CB-2015-01-251882. N.W. P-M acknowledges support from the Adolf Martens fellowship at BAM Berlin. The FESEM analyzes were carried out by the M.C. Dora Huerta Quintanilla at the National Laboratory of Nano and Biomaterials, Cinvestav-IPN; financed by the projects FOMIX-Yucatán 2008-108160, CONACYT LAB-2009-01-123913, 292692, 294643, 188345 and 204822. The authors are grateful to J. Bante-Guerra for his technical assistance.

Author information



Corresponding author

Correspondence to I. Y. Forero-Sandoval.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Forero-Sandoval, I.Y., Cervantes-Alvarez, F., Ramirez-Rincon, J.A. et al. Percolation Threshold of the Thermal, Electrical and Optical Properties of Carbonyl-Iron Microcomposites. Appl Compos Mater (2021).

Download citation


  • Thermal conductivity
  • Electrical conductivity
  • Emissivity
  • Thermal percolation threshold
  • Electrical percolation threshold