Zero-Waste Recycling of Shelf-Cured Pre-Impregnated Carbon Fiber Reinforced Epoxy Laminae


The main objective of this study was to investigate a zero-waste restoration and reprocessing method of carbon/epoxy prepreg. We studied a series of chemical and thermal treatments to reshape and re-strengthen pre-impregnated (prepreg) carbon fiber-reinforced polymer (CFRP) composite rolls that were cured over the shelf, never been used, and would otherwise be discarded. The proposed treatment method is of high interest in minimizing solid waste and reducing the environmental footprint of polymer composites. We used a series of solvents (water, ethanol, N, N- Dimethylformamide (DMF) and Sulfuric Acid) to induce ductility in the scrap already rigid self-cured specimens. The chemical treatments of the scraps using mixtures of DMF-Water or DMF-Ethanol enhanced the ductility of the samples without any negative impact on the mechanical properties. However, the chemical treatment of scarps using a mixture of sulfuric acid with other solvents, could not improve the ductility of the samples. Heat pressing the chemically treated samples further enhanced the ductility of the samples and flattened the scrap composites. The recovered strength and modulus of the recycled prepreg CFRP reached a promising value of over 65% of the original properties, where the samples treated with a mixture of DMF-ethanol preserved their mechanical properties better than other treated samples. The simple, safe, and zero-waste recycling technique presented in this study has proven to be effective for closing the life cycle of a thermoset polymer composite.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Mangalgiri, P.D.: Composite materials for aerospace applications. Bull. Mater. Sci. 22, 657–664 (1999)

    CAS  Article  Google Scholar 

  2. 2.

    Adam, H.: Carbon fibre in automotive applications. Mater. Des. 18, 349–355 (1997)

    CAS  Article  Google Scholar 

  3. 3.

    Pimenta, S., Pinho, S.T.: Pinho. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manag. 31, 378–392 (2011)

    CAS  Article  Google Scholar 

  4. 4.

    Schinner, G., Brandt, J., Richter, H.: Recycling carbon-fiber-reinforced thermoplastic composites. J. Thermoplast. Compos. Mater. 9(3), 239–245 (1996)

  5. 5.

    Li, H., Englund, K.: Recycling of carbon fiber reinforced thermoplastic composite wastes from the aerospace industry. J. Compos. Mater. 51(9), 1265–1273 (2017)

  6. 6.

    Fried, J.R.: Polymer Science & Technology. Pearson Education, United States of America: Hoboken, (2003)

  7. 7.

    Palmer, J., Ghita, O.R., Savage, L., Evans, K.E.: Successful closed-loop recycling of thermoset composites. Composites Part A. 40, 490–498 (2009)

    Article  Google Scholar 

  8. 8.

    Oliveux, G., Dandy, L., Leeke, G.: Current status of recycling of fibre reinforced polymers: review of technologies, reuse and resulting properties. Prog. Mater. Sci. 72, 61–99 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    Liu, Y., Farnsworth, M., Tiwari, A.: A review of optimization techniques used in the composite recycling area: state-of-the-art and steps towards a research agenda. Clean. Prod. 140, 1775–1781 (2017)

    Article  Google Scholar 

  10. 10.

    Thomas, C., Borges, P.H.R., Panzera, T.H., Cimentada, A., Lombillo, I.: Epoxy composites containing CFRP powder wastes. Composites Part B. 59, 260–268 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    Ogi, K., Shinoda, T., Mizui, M.: Strength in concrete reinforced with recycled CFRP pieces. Composites Part A. 36, 893–902 (2005)

    Article  Google Scholar 

  12. 12.

    Wong, K., Rudd, C., Pickering, S., Liu, X.L.: Composites recycling solutions for the aviation industry. Sci. China Technol. Sci. 60, 1291–1300 (2017)

    Article  Google Scholar 

  13. 13.

    Meyer, L.O., Schulte, K.: CFRP-recycling following a pyrolysis route: process optimization and potentials. Compos. Mater. 43, 1121–1132 (2009)

    CAS  Article  Google Scholar 

  14. 14.

    Pickering, S.J., Liu, Z., Turner, T.A., Wong, K.H.: Applications for carbon fibre recovered from composites. IOP Conf Ser Mater Sci Eng. 139, 012005 (2016)

    Article  Google Scholar 

  15. 15.

    Piñero-Hernanz, R., Dodds, C., Hyde, J., García-Serna, J., Poliakoff, M., Lester, E., Cocero, M.J., Kingman, S., Pickering, S., Wong, K.H.: Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Composites Part A. 39, 454–461 (2008)

    Article  Google Scholar 

  16. 16.

    Feraboli, P., Kawakami, H., Wade, B., Gasco, F., DeOto, L., Masini, A.: Recyclability and reutilization of carbon fiber fabric/epoxy composites. J. Compos. Mater. 46(12), 1459–1473 (2011)

    Article  Google Scholar 

  17. 17.

    Xu, P., Li, J., Ding, J.: Chemical recycling of carbon fibre/epoxy composites in a mixed solution of peroxide hydrogen and N, N-dimethylformamide. Compos. Sci. Technol. 82, 54–59 (2013)

    CAS  Article  Google Scholar 

  18. 18.

    Mastali, M., et al.: The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Composites Part B. 92, 360–376 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    Asmatulu, E., Twomey, J., Overcash, M.: Recycling of fiber-reinforced composites and direct structural composite recycling concept. Compos Mater. 48, 593–608 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    Mamanpush, S.H., Li, H., Englund, K., Tabatabaei, A.T.: Dataset demonstrating physical properties of recycled wind turbine blade composites. Data Brief. 20, 658–661 (2018)

    Article  Google Scholar 

  21. 21.

    Souza, C., Opelt, C., Candido, G., Souza, S.D.B., Botelho, E., Marlet, J.M., Rezende, M.: Reuse of uncured carbon fibre/epoxy resin Prepreg scraps: mechanical behavior & environmental response. ACS Sustain. Chem. Eng. 7(2), 2200–2206 (2019)

    Article  Google Scholar 

  22. 22.

    Nilakantan, G., Nutt, S.: Reuse and upcycling of thermoset prepreg scrap: case study with out-of-autoclave carbon fiber/epoxy prepreg. J. Compos. Mater. 52(3), 341–360 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    Nilakantan, G., Nutt, S.: Reuse and upcycling of aerospace prepreg scrap and waste. Reinf. Plast. 59(1), 44–51 (2015)

    Article  Google Scholar 

  24. 24.

    Adams, R.D., Collins, A., Cooper, D., Wingfield-Digby, M., Watts-Farmer, A., Laurence, A., Patel, K., Stevens, M., Watkins, R.: Recycling of reinforced plastics. Appl. Compos. Mater. 21, 263–284. Aug 2019 (2014)

  25. 25.

    Corcione, C.E., Freuli, F., Frigione, M.: Cold curing structural epoxy resins: analysis of the curing reaction as a function of curing time and thickness. Mater. 7, 6832–6842 (2017)

    Article  Google Scholar 

  26. 26.

    Gul, S., Shah, A.A., Bilal, S.: Calculation of activation energy of degradation of polyaniline-dodecylbenzene sulfonic acid salts via TGA. J Sci Innov Res. 2(3), 673–684 (2013)

    Google Scholar 

  27. 27.

    ASTM: D3039 / D3039M-17, Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken (2017)

    Google Scholar 

  28. 28.

    Kong, E.S.: Physical aging in epoxy matrices and composites. In: Dusek, K. (ed.) Epoxy Resins and Composites IV, pp. 125–171 (2005)

    Google Scholar 

  29. 29.

    Hepburn, D.M., Kemp, I.J., Shields, A.J., Cooper, J.: Degradation of epoxy resin by partial discharges. IEEE Proc. Sci. Meas. Technol. 147, 97–104 (2000)

    CAS  Article  Google Scholar 

  30. 30.

    Huang, Y., Ge, Z., Zhao, C., Dong, J., Shitian, M., Ma, W., Wang, G., Qian, X.: Solvothermal recovery of carbon fibers from thermoset polymer-based carbon fiber reinforced polymers. J. Reinf. Plast. Compos. 34(20), 1673–1683 (2015)

    CAS  Article  Google Scholar 

  31. 31.

    Sun, J., Li, H., Wang, C., Yuan, D., Stubbs, L.P., He, C.: The effect of residual solvent N, N′- Dimethylformamide on the curing reaction and mechanical properties of epoxy and lignin epoxy Composites. Macromol. Chem. Phys. 217, 1065–1073 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    Lau, K., Lu, M., Lam, C., Cheung, H., Sheng, F., Li, H.: Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos. Sci. Technol. 65, 719–725 (2005)

    CAS  Article  Google Scholar 

  33. 33.

    Ren, Y.K., Liu, S.D., Duan, B., Xu, Y.F., Li, Z.Q., Huang, Y., Hu, L.H., Zhu, J., Dai, S.Y.: Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin coating. J. Alloys Compd. 705, 205–210 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    Rodríguez-González, J.A., Rubio-González, C., Meneses-Nochebuena, C.A., González-García, P., Licea-Jiménez, L.: Enhanced interlaminar fracture toughness of unidirectional carbon fiber/epoxy composites modified with sprayed multi-walled carbon nanotubes. Compos Interface. 24, 883–896 (2017)

    Article  Google Scholar 

Download references


The authors would like to acknowledge the financial support of the National Council for Scientific Research – Lebanon (CNRS-L) and the University Research Board (URB) at the American University of Beirut.

Author information



Corresponding author

Correspondence to Mohammad Harb.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ajam, A., Tehrani-Bagha, A., Mustapha, S. et al. Zero-Waste Recycling of Shelf-Cured Pre-Impregnated Carbon Fiber Reinforced Epoxy Laminae. Appl Compos Mater (2020).

Download citation


  • Composites
  • Carbon fibers
  • Thermoset polymers
  • Recycling
  • Mechanical properties
  • Chemical analysis