Electrical Resistance Curing Method for Hybrid Metal-CFRP Tubes

Abstract

Hybrid metal-Carbon Fiber Reinforced Polymers (CFRP) core tubes and rollers are becoming progressively important in the automotive, aerospace, and printing industry for the excellent performance/price ratio. The enhanced mechanical properties and favorable tribological performance of these tubes are provided by the coupling of metal with CFRP compared to tubes build from solely CFRP or metal. However, these kinds of tubes are very expensive and only the co-curing technique of metal and CFRP parts guarantees a reduction in production cost and the competitiveness of products. In this work, a simple out-of-autoclave (OOA) electrical resistance co-curing method for hybrid metal-CFRP tubes, based on an analytical model, that exploits the Joule effects, is proposed and verified by experimental test and finite element analysis (FEA). This technique can also be used for other geometries and guarantees considerable energy savings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Zhu, G., Sun, G., Liu, Q., Li, G., Li, Q.: On crushing characteristics of different configurations of metal-composites hybrid tubes. Compos. Struct. 175, 58–69 (2017)

    Article  Google Scholar 

  2. 2.

    Zhu, G., Zhao, X., Shi, P., Yu, Q.: Crashworthiness analysis and design of metal/cfrp hybrid structures under lateral loading. IEEE Access 7, 64558–64570 (2019)

    Article  Google Scholar 

  3. 3.

    Zhu, G., Sun, G., Yu, H., Li, S., Li, Q.: Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading. Int. J. Mech. Sci. 135, 458–483 (2018)

    Article  Google Scholar 

  4. 4.

    Reuter, C., Tröster, T.: Crashworthiness and numerical simulation of hybrid aluminium-cfrp tubes under axial impact. Thin-Walled Struct. 117, 1–9 (2017)

    Article  Google Scholar 

  5. 5.

    Feng, P., Hu, L., Qian, P., Ye, L.: Buckling behavior of cfrp-aluminum alloy hybrid tubes in axial compression. Eng. Struct. 132, 624–636 (2017)

    Article  Google Scholar 

  6. 6.

    Shi, P., Yu, Q., Huang, R., Zhao, X., Zhu, G.: Crashworthy and performance-cost characteristics of aluminum-cfrp hybrid tubes under quasi-static axial loading. Fibers and Polymers 20(2), 384–397 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    Sun, G., Wang, Z., Hong, J., Song, K., Li, Q.: Experimental investigation of the quasi-static axial crushing behavior of filament-wound cfrp and aluminum/cfrp hybrid tubes. Compos. Struct. 194, 208–225 (2018)

    Article  Google Scholar 

  8. 8.

    Feng, P., Hu, L., Qian, P., Ye, L.: Compressive bearing capacity of cfrp–aluminum alloy hybrid tubes. Compos. Struct. 140, 749–757 (2016)

    Article  Google Scholar 

  9. 9.

    Sun, G., Yu, H., Wang, Z., Xiao, Z., Li, Q.: Energy absorption mechanics and design optimization of cfrp/aluminium hybrid structures for transverse loading. Int. J. Mech. Sci. 150, 767–783 (2019)

    Article  Google Scholar 

  10. 10.

    Zhang, J., Lu, B., Zheng, D., Li, Z.: Axial crushing theory of metal-frp hybrid square tubes wrapped with antisymmetric angle-ply. Thin-Walled Struct. 137, 367–376 (2019)

    Article  Google Scholar 

  11. 11.

    Choi, J. H., Lee, D. G.: Torque capacity of co-cured tubular lap joints. Journal of composite materials 31(14), 1381–1396 (1997)

    CAS  Article  Google Scholar 

  12. 12.

    Chon, C. T.: Analysis of tubular lap joint in torsion. J. Compos. Mater. 16(4), 268–284 (1982)

    Article  Google Scholar 

  13. 13.

    Jeon, S. -W., Cho, Y. H., Han, M. -G., Chang, S. -H.: Design of carbon/epoxy–aluminum hybrid upper arm of the pantograph of high-speed trains using adhesive bonding technique. Compos. Struct. 152, 538–545 (2016)

    Article  Google Scholar 

  14. 14.

    Kim, J. K., Lee, D. G., Cho, D. H.: Investigation of adhesively bonded joints for composite propeller shafts. Journal of Composite Materials 35(11), 999–1021 (2001)

    CAS  Article  Google Scholar 

  15. 15.

    Wang, J., Gao, H., Ding, L., Hao, Y., Wang, B., Sun, T., Liang, Y.: Bond strength between carbon fiber–reinforced plastic tubes and aluminum joints for racing car suspension. Adv Mech Eng 8(10), 1687814016674627 (2016)

    Google Scholar 

  16. 16.

    Cho, D. H., Choi, J. H., et al.: Manufacture of one-piece automotive drive shafts with aluminum and composite materials. Composite Structures 38(1-4), 309–319 (1997)

    Article  Google Scholar 

  17. 17.

    Cho, D. H., Lee, D. G.: Manufacturing of co-cured composite aluminum shafts with compression during co-curing operation to reduce residual thermal stresses. Journal of Composite Materials 32(12), 1221–1241 (1998)

    CAS  Article  Google Scholar 

  18. 18.

    Cho, D. H., Lee, D. G.: Optimum design of co-cured steel–composite tubular single lap joints under axial load. Journal of Adhesion Science and Technology 14(7), 939–963 (2000)

    CAS  Article  Google Scholar 

  19. 19.

    Kim, H. S., Kim, J. W., Kim, J. K., et al.: Design and manufacture of an automotive hybrid aluminum/composite drive shaft. Composite Structures 63(1), 87–99 (2004)

    Article  Google Scholar 

  20. 20.

    Han, M.-G., Cho, Y.H., Jeon, S.-W., Chang, S.-H.: Design and fabrication of a metal-composite hybrid pantograph upper arm by co-cure technique with a friction layer. Compos. Struct. 174, 166–175 (2017)

    Article  Google Scholar 

  21. 21.

    Povolo, M., Raimondi, L., Brugo, T. M., Pagani, A., Comand, D., Pirazzini, L., Zucchelli, A.: Design and manufacture of hybrid aluminum/composite co-cured tubes with viscoelastic interface layer. Procedia Structural Integrity 12, 196–203 (2018)

    Article  Google Scholar 

  22. 22.

    Joseph, C., Viney, C.: Electrical resistance curing of carbon-fibre/epoxy composites. Compos. Sci. Technol. 60(2), 315–319 (2000)

    CAS  Article  Google Scholar 

  23. 23.

    Enoki, S., Iwamoto, K., Harada, R., Tanaka, K., Katayama, T.: Heating properties of carbon fibers by using direct resistance heating. WIT Transactions on the Built Environment 124, 239–248 (2012)

    CAS  Article  Google Scholar 

  24. 24.

    Athanasopoulos, N., Sotiriadis, G., Kostopoulos, V.: A study on the effect of joule-heating during the liquid composite molding (lcm) process and on the curing of cfrp composite laminates. In: Proceedings of 10th international conference on flow processes in composite materials (FPCM10). Paper, no. 32 (2010)

  25. 25.

    Asanuma, H., Haga, O., Ohira, J., Takemoto, K., Imori, M.: Fabrication of cfrp/al active laminates. JSME International Journal Series A Solid Mechanics and Material Engineering 46(3), 478–483 (2003)

    CAS  Article  Google Scholar 

  26. 26.

    Mas, B., Fernández-Blázquez, J. P., Duval, J., Bunyan, H., Vilatela, J. J.: Thermoset curing through joule heating of nanocarbons for composite manufacture, repair and soldering. Carbon 63, 523–529 (2013)

    CAS  Article  Google Scholar 

  27. 27.

    Nguyen, N., Hao, A., Park, J. G., Liang, R.: In situ curing and out-of-autoclave of interply carbon fiber/carbon nanotube buckypaper hybrid composites using electrical current. Adv. Eng. Mater. 18(11), 1906–1912 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    Zhu, L., Pitchumani, R.: Analysis of a process for curing composites by the use of embedded resistive heating elements. Compos. Sci. Technol. 60(14), 2699–2712 (2000)

    CAS  Article  Google Scholar 

  29. 29.

    Ramakrishnan, B., Zhu, L., Pitchumani, R.: Curing of composites using internal resistive heating. J Manuf Sci Eng 122(1), 124–131 (2000)

    Article  Google Scholar 

  30. 30.

    Mawardi, A., Pitchumani, R.: Optimal temperature and current cycles for curing of composites using embedded resistive heating elements. Journal of Heat Transfer 125 (1), 126–136 (2003)

    CAS  Article  Google Scholar 

  31. 31.

    Ashrafi, M., Devasia, S., Tuttle, M. E.: Resistive embedded heating for homogeneous curing of adhesively bonded joints. Int. J. Adhes. Adhes. 57, 34–39 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    Povolo, M., Brugo, T. M., Zucchelli, A.: Numerical and experimental investigation of aluminum/cfrp hybrid tubes with rubber-like interlayer. Applied Composite Materials (2020)

  33. 33.

    A. R. M. Ansys, help system, Engineering DATA, ANSYS, Inc, 2017

Download references

Acknowledgments

This work was funded by Emilia Romagna region (Italy), POR-FESR ER, Research and innovation and by Reglass HT Srl (Italy) 2017-2020 Research Fellowship Grant.

We thank Hannah M. Ullberg for her help in correcting the language of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco Povolo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Povolo, M., Tabucol, J., Brugo, T.M. et al. Electrical Resistance Curing Method for Hybrid Metal-CFRP Tubes. Appl Compos Mater (2020). https://doi.org/10.1007/s10443-020-09818-2

Download citation

Keywords

  • Hybrid tubes
  • Carbon fiber
  • Finite element analysis (FEA)
  • Carbon Fiber Reinforced Polymers (CFRP)
  • Curing