Skip to main content
Log in

Multi-Scale Modeling and Experimental Study of the Strength of Plain-Woven SiC/SiC Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The strength of plain-woven SiC/SiC composites was predicted with the multi-scale method. Firstly, a three-dimensional unit cell was used to characterize the geometric structure of plain-woven SiC/SiC composites. Secondly, the yarns were seen as minicomposites, whose axial mechanical properties were obtained by the shear-lag model, and the fiber defect model was adopted to simulate the failure process of minicomposites. The strength of plain-woven SiC/SiC composites predicted with the multi-scale method is in good agreement with the experimental result. Besides, the effects of heat treatment and load-carrying capacity of broken fiber on the strength of plain-woven SiC/SiC composites were evaluated, and the effect of woven geometry structure was also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yin, X.W., Cheng, L.F., Zhang, L.T., Travitzky, N., Greil, P.: Fibre-reinforced multifunctional SiC matrix composite materials. Int. Mater. Rev. 62(3), 117–172 (2017). https://doi.org/10.1080/09506608.2016.1213939

    Article  CAS  Google Scholar 

  2. Meyer, P., Waas, A.M.: FEM predictions of damage in continous fiber ceramic matrix composites under transverse tension using the crack band method. Acta Mater. 102, 292–303 (2016). https://doi.org/10.1016/j.actamat.2015.09.002

    Article  CAS  Google Scholar 

  3. Gao, X.G., Zhang, S., Fang, G.W., Song, Y.D.: Distribution of slip regions on the fiber-matrix interface of ceramic matrix composites under arbitrary loading. J. Reinf. Plast. Compos. 34(20), 1713–1723 (2015). https://doi.org/10.1177/0731684415596596

    Article  CAS  Google Scholar 

  4. Curtin, W.A.: Theory of mechanical properties of ceramic-matrix composites. J. Am. Ceram. Soc. 74(11), 2837–2845 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06852.x

    Article  CAS  Google Scholar 

  5. Curtin, W.A.: Ultimate strengths of fibre-reinforced ceramics and metals. Composites. 24(2), 98–102 (1993). https://doi.org/10.1016/0010-4361(93)90005-s

    Article  CAS  Google Scholar 

  6. Keith, W.P., Kedward, K.T.: The stress-strain behaviour of a porous unidirectional ceramic matrix composite. Composites. 26(3), 163–174 (1995). https://doi.org/10.1016/0010-4361(95)91379-j

    Article  CAS  Google Scholar 

  7. Pryce, A.W., Smith, P.A.: Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cycle loading. Acta Metall. Mater. 41(4), 1269–1281 (1993). https://doi.org/10.1016/0956-7151(93)90178-u

    Article  CAS  Google Scholar 

  8. Curtin, W.A., Ahn, B.K., Takeda, N.: Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites. Acta Mater. 46(10), 3409–3420 (1998). https://doi.org/10.1016/s1359-6454(98)00041-x

    Article  CAS  Google Scholar 

  9. Yang, C.P., Jia, F., Wang, B., Huang, T., Jiao, G.Q.: Unified tensile model for unidirectional ceramic matrix composites with degraded fibers and interface. J. Eur. Ceram. Soc. 39(2–3), 222–228 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.09.006

    Article  CAS  Google Scholar 

  10. Aubard, X., Lamon, J., Allix, O.: Model of the nonlinear mechanical behavior of 2D SiC-SiC chemical vapor infiltration composites. J. Am. Ceram. Soc. 77(8), 2118–2126 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07106.x

    Article  CAS  Google Scholar 

  11. Fagiano, C., Genet, M., Baranger, E., Ladeveze, P.: Computational geometrical and mechanical modeling of woven ceramic composites at the mesoscale. Compos. Struct. 112, 146–156 (2014). https://doi.org/10.1016/j.compstruct.2014.01.045

    Article  Google Scholar 

  12. Ismar, H., Schroter, F., Streicher, F.: Modeling and numerical simulation of the mechanical behavior of woven SiC/SiC regarding a three-dimensional unit cell. Comput. Mater. Sci. 19(1–4), 320–328 (2000). https://doi.org/10.1016/s0927-0256(00)00170-1

    Article  CAS  Google Scholar 

  13. Jacobsen, T.K., Brondsted, P.: Mechanical properties of two plain-woven chemical vapor infiltrated silicon carbide-matrix composites. J. Am. Ceram. Soc. 84(5), 1043–1051 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00788.x

    Article  CAS  Google Scholar 

  14. Yang, C.P., Jiao, G.Q., Wang, B., Huang, T., Guo, H.B.: Damage-based failure theory and its application to 2D-C/SiC composites. Compos. Pt. A-Appl. Sci. Manuf. 77, 181–187 (2015). https://doi.org/10.1016/j.compositesa.2015.07.003

    Article  CAS  Google Scholar 

  15. Araki, H., Suzuki, H., Yang, W., Sato, S., Noda, T.: Effect of high temperature heat treatment in vacuum on microstructure and bending properties of SiCf/SiC composites prepared by CVI. J. Nucl. Mater. 258, 1540–1545 (1998). https://doi.org/10.1016/s0022-3115(98)00293-1

    Article  Google Scholar 

  16. Zhang, S., Gao, X.G., Song, Y.D.: In situ strength model for continuous fibers and multi-scale modeling the fracture of C/SiC composites. Appl. Compos. Mater. 26(1), 357–370 (2019). https://doi.org/10.1007/s10443-018-9696-y

    Article  CAS  Google Scholar 

  17. Zhang, S., Gao, X.G., Dong, H.N., Ju, X.R., Song, Y.D.: In situ modulus and strength of carbon fibers in C/SiC composites. Ceram. Int. 43(9), 6885–6890 (2017). https://doi.org/10.1016/j.ceramint.2017.02.109

    Article  CAS  Google Scholar 

  18. Zhang, S., Gao, X., Chen, J., Dong, H., Song, Y., Zhang, H.: Effects of micro-damage on the nonlinear constitutive behavior of SiC/SiC Minicomposites. J. Ceram. Sci. Technol. 7(4), 341–347 (2016). https://doi.org/10.4416/jcst2016-00040

    Article  Google Scholar 

  19. Xia, Z.H., Zhou, C.W., Yong, Q.L., Wang, X.W.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 43(2), 266–278 (2006). https://doi.org/10.1016/j.ijsolstr.2005.03.055

    Article  Google Scholar 

  20. Gowayed, Y., Ojard, G., Santhosh, U., Jefferson, G.: Modeling of crack density in ceramic matrix composites. J. Compos. Mater. 49(18), 2285–2294 (2015). https://doi.org/10.1177/0021998314545188

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China [grant number 2017YFB0703200], the National Natural Science Foundation of China [grant numbers 51575261, 51675266], the Fundamental Research Funds for the Central universities [NF2018002], and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiguang Gao or Yingdong Song.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Dong, H., Zhang, S. et al. Multi-Scale Modeling and Experimental Study of the Strength of Plain-Woven SiC/SiC Composites. Appl Compos Mater 26, 1333–1348 (2019). https://doi.org/10.1007/s10443-019-09783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-019-09783-5

Keywords

Navigation