Skip to main content
Log in

On the Distribution of Delamination in Composite Structures and Compressive Strength Prediction for Laminates with Embedded Delaminations

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this study, large numbers of aircraft composite structures were inspected, and the distribution of delamination sizes and though thickness positions in the composite laminates are investigated. An experiment is conducted to probe into the influence of delamination sizes and through thickness positions on the compressive strengths of laminates with single embedded circular delamination, with the most dangerous delamination sizes and positions defined from the distribution. Furthermore, a shell model is established for compressive strength prediction, with delamination propagation assessed using a mixed mode criterion. The finite element (FE) prediction comes out to be in good agreement with the experimental measurements, for the predicted compressive strengths stand within 10% error of experimental results. It was observed that the compressive strength was highly influenced by the delamination size, while the through thickness position of delamination did not have significant effect on the compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Chai, H., Babcock, C.A., Knauss, W.G.: One dimensional modeling of failure in laminated plates by delamination buckling. Int. J. Solids Struct. 17(1), 1069–1083 (1981)

    Article  Google Scholar 

  2. Lachaud, F., Lorrein, B., Michel, L., Barriel, R.: Experimental and numerical study of delamination caused by local buckling of thermoplastic and thermoset composites. J. Compos. Sci. Technol. 58, 727–733 (1998)

    Article  CAS  Google Scholar 

  3. Davidson, B.D., Krafchak, T.M.: A comparison of energy release rates for locally buckled laminates containing symmetrically and asymmetrically located delaminations. J. Compos. Mater. 29, 700–713 (1995)

    Article  Google Scholar 

  4. Hua, N., Fukunaga, H., Sekine, H., Mohammad Ali, K.: Compressive buckling of laminates with an embedded delamination. Compos. Sci. Technol. 59, 1247–1260 (1999)

    Article  Google Scholar 

  5. Wagner, W., Gruttman, F., Sprenger, W.: A finite element formulation for the simulation of propagating delaminations in layered composite structures. Int. J. Numer. Methods Eng. 51, 1337–1359 (2001)

    Article  Google Scholar 

  6. Tafreshi, A., Oswald, T.: Global buckling behavior and local damage propagation in composite plates with embedded delaminations. Int J Pressure Vessels Piping 80, 9–20 (2003)

    Article  Google Scholar 

  7. Hwang, S.F., Mao, C.P.: Failure of delaminated carbon/epoxy composite plates under compression. J. Compos. Mater. 35, 1634–1653 (2001)

    Article  Google Scholar 

  8. Short, G.J., Guild, F.J., Pavier, M.J.: The effect of delamination geometry on the compressive failure of composite laminates. Compos. Sci. Technol. 61, 2075–2086 (2001)

    Article  CAS  Google Scholar 

  9. De Borst, R., Remmers, J.C.: Computational modeling of delamination. J Compos Sci Technol 66, 723–730 (2006)

    Article  Google Scholar 

  10. Suemasu, H., Irie, T., Ishikawa, T.: Compressive behavior of laminated composites with multiple delaminations. Canada–Japan Workshop Compos Mater (2004)

  11. Borg, R., Nilsson, L., Simonsson, K.: Modeling of delamination using a discretized cohesive zone and damage formulation. Comp Sci Tech 62, 1299–1314 (2002)

    Article  CAS  Google Scholar 

  12. Cappello, F., Tumino, D.: Numerical analysis of composite plates with multiple delaminations subjected to uniaxial buckling load. Compos. Sci. Technol. 66, 264–272 (2006)

    Article  Google Scholar 

  13. Majima, O., Suemasu, H.: An interface element with continuous traction to analyze delamination propagation. Adv. Compos. Mater 14(2), 165–180 (2005)

    Article  CAS  Google Scholar 

  14. Aoki, Y., Suemasu, H., Ishikawa, T.: Damage propagation in CFRP laminates subjected to low velocity impact and static indentation. Adv. Compos. Mater 16(1), 45–61 (2007)

    Article  CAS  Google Scholar 

  15. Suemasu, H., Sasaki, W., Ishikawa, T., Aoki, Y.: A numerical study on compressive behavior of composite plates with circular delaminations considering delamination propagation. J Compos Sci Technol 68, 2562–2567 (2008)

    Article  Google Scholar 

  16. Aslan, Z., Sahin, M.: Buckling behavior and compressive failure of composite laminates containing multiple large delaminations. J Compos Struct 89, 382–390 (2009)

    Article  Google Scholar 

  17. Wang, J.T., Raju, I.S., Sleight, D.W.: Composite skin-stiffener debond analysis using fracture mechanics approach with shell elements. Compos. Eng. 5(3), 277–296 (1995)

    Article  Google Scholar 

  18. Glaessgen, E.H., Riddell, W.T., Raju, I.S.: Effect of shear deformation and continuity on delamination modeling with plate elements.AIAA-98-2022, (1998)

  19. Benzeggagh, M., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composite Science and Technology 56, 439–449 (1996)

    Article  CAS  Google Scholar 

  20. Rybicki, E.F., Kanninen, M.F.: A finite element calculation of stress intensity factors by a modified crack closure intergral. Eng. Fract. Mech. 9, 931–938 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Yongbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huimin, F., Yongbo, Z. On the Distribution of Delamination in Composite Structures and Compressive Strength Prediction for Laminates with Embedded Delaminations. Appl Compos Mater 18, 253–269 (2011). https://doi.org/10.1007/s10443-010-9154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-010-9154-y

Keywords

Navigation