Skip to main content

Advertisement

Log in

Mathematical Assessment of the Role of Early Latent Infections and Targeted Control Strategies on Syphilis Transmission Dynamics

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

A new multi-stage deterministic model for the transmission dynamics of syphilis, which incorporates disease transmission by individuals in the early latent stage of syphilis infection and the reversions of early latent syphilis to the primary and secondary stages, is formulated and rigorously analysed. The model is used to assess the population-level impact of preventive (condom use) and therapeutic measures (treatment using antibiotics) against the spread of the disease in a community. It is shown that the disease-free equilibrium of the model is globally-asymptotically stable whenever the associated control reproduction number (denoted by \(\mathcal {R}_T\)) is less than unity. A special case of the model is shown to have a unique and globally-asymptotically stable endemic equilibrium whenever the associated reproduction number (denoted by \({\tilde{\mathcal {R}}}_T\)) exceeds unity. Uncertainty and sensitivity analysis of the model, using parameter values and ranges relevant to syphilis transmission dynamics in Nigeria, show that the top three parameters that drive the syphilis infection (with respect to \(\mathcal {R}_T\)) are the disease transmission rate (\(\beta\)), compliance in condom use (c) and efficacy of condom (\(\epsilon _c\)). Numerical simulations of the model show that the targeted treatment of secondary syphilis cases is more effective than the targeted treatment of individuals in the primary or early latent stage of syphilis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. www.worldometers.info. Accessed 20 May 2016.

References

  • Centres for Disease Control and Prevention (2014) Primary and secondary syphilis—United States, 2005–2013. Morb Mortal Wkly Rep 63(18):402–406

    Google Scholar 

  • Aadland D, Finnoff D, Huang K (2013) Syphilis cycles. J Econ Financ 13(1):297–348

    Google Scholar 

  • Bartlett JG, Auwaerter PG, Pham PA (2010) John Hopkins POC-IT Center ABX guide: diagnosis and treatment of infectious diseases. Jones and Bartlett Publishers, Burlington

    Google Scholar 

  • Baughn R, Musher D (2005) Secondary syphilitic lesions. Clin Microbiol Rev 18(1):205–216

    Article  Google Scholar 

  • Berman SM (2004) Maternal syphilis: pathophysiology and treatment. Bull WHO 82(6):433–438

    Google Scholar 

  • Birnbaum NR, Goldschmidt RH, Buffett WO (1999) Resolving the common clinical dilemmas of syphilis. Am Fam Physician 59(8):2233–2240

    Google Scholar 

  • Blower SM, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev 2:229–243

    Article  Google Scholar 

  • Breban R, Supervie V, Okano JT, Vardavas R, Blower S (2008) Is there any evidence that syphilis epidemics cycle? Lancet Infect Dis 8(9):577–581

    Article  Google Scholar 

  • British Columbia HealthLinkBC: stages of syphilis. www.healthlinkbc.ca. Accessed 8 Apr 2018

  • Cameron CE, Lukehart SA (2014) Current status of syphilis vaccine development: need, challenges, prospects. Vaccine 32(14):1609–9

    Article  Google Scholar 

  • Center for Substance Abuse Treatment (1993) Screening for infectious diseases among substance abusers. Rockville, MD. Substance abuse and mental health services administration (US): chapter 10, syphilis

  • Centres for Disease Control and Prevention (2016) Sexually transmitted diseases: syphilis. www.cdc.gov/std/syphilis. Accessed 24 Jan 2016 and 13 June 2016

  • Centres for Disease Control and Prevention (2018) Syphilis—CDC fact sheet (detailed). www.cdc.gov/std/syphilis. Accessed 8 Apr 2018

  • Chen Z, Zhang G, Gong X, Lin C, Gao X, Liang G, Yue X, Chen X, Cohen MS (2007) Syphilis in China: results of a national surveillance programme. Lancet 369:132–138

    Article  Google Scholar 

  • Diekmann O, Heesterbeek J, Metz J (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382

    Article  Google Scholar 

  • Doherty L, Fenton K, Jones J, Paine T, Higgins S, Williams D, Palfreeman A (2002) Syphilis: old problem, new strategy. BMJ 325:153–156

    Article  Google Scholar 

  • Fenton KA, Breban R, Vardavas R, Okano JT, Martin T, Aral S, Blower S (2008) Infectious syphilis in high-income settings in the 21st century. Lancet Infect Dis 8(4):244–253

    Article  Google Scholar 

  • Garnett GP, Aral SO, Hoyle DV, Cates W, Anderson RM (1997) The natural history of syphilis: implications for the transition dynamics and control of infection. Sex Transm Dis 24(4):185–200

    Article  Google Scholar 

  • Grassly C, Fraser C, Garnett GP (2005) Host immunity and synchronized epidemics of syphilis across the United States. Nature 433:417–421

    Article  Google Scholar 

  • Gunn RA, Harper SL, Borntrager DE (2000) Implementing a syphilis elimination and importation control strategy in a low-incidence urban area: san Diego County, california, 1997–1998. Am J Public Health 90:1540–1544

    Article  Google Scholar 

  • Gutierrez J-P, McPherson S, Fakoya A, Matheou A, Bertozzi SM (2010) Community-based prevention leads to an increase in condom use and a reduction in sexually transmitted infections (STIs) among men who have sex with men (MSM) and female sex workers (FSW): the Frontiers Prevention Project (FPP) evaluation results. BMC Public Health 10:497–508

    Article  Google Scholar 

  • Hegamin-Younger C, Jeremiah R, Bilbro N (2014) Patterns of Caribbean masculinities and condom compliance among males in Grenada. Am J Men’s Health 8(4):335–338

    Article  Google Scholar 

  • Hong FC, Yang YZ, Liu XL, Feng TJ, Liu JB, Zhang CL, Lan LN, Yao MZ, Zhou H (2014) Reduction in mother-to-child tranmission of syphilis for 10 years in Shenzhen, China. Sex Transm Dis 41(3):188–193

    Article  Google Scholar 

  • Iboi E, Okuonghae D (2016) Population dynamics of a mathematical model for syphilis. Appl Math Model 40:3573–3590

    Article  Google Scholar 

  • Jia Z, Huang X, Wu H, Zhang T, Li N et al (2015) HIV burden in men who have sex with men: a prospective cohort study 2007–2012. Sci Rep 5:11205. https://doi.org/10.1038/srep11205

    Article  Google Scholar 

  • Karen RD, Susan CW (1999) The effectiveness of condoms in reducing heterosexual transmission of HIV. Fam Plan Perspect 31(6):272–279

    Article  Google Scholar 

  • LaFond RE, Lukehart SA (2006) Biological basis for syphilis. Clin Microbiol Rev 19:29–49

    Article  Google Scholar 

  • LaSalle J, Lefschetz S (1976) The stability of dynamical systems. SIAM, Philadelphia

    Book  Google Scholar 

  • Marfatis YS, Pandya I, Mehta K (2015) Condoms: past, present, and future. Indian J Sex Transm Dis 36(2):133–139

    Article  Google Scholar 

  • Mercure SA, Savard N (2015) Effectiveness of interventions for syphilis prevention and control in MSM: a summary of published research findings. Report of the National Collaborating Center for Infectious Diseases, Canada

  • Milner F, Zhao R (2010) A new mathematical model of syphilis. Math Model Nat Phenom 5(6):96–108

    Article  Google Scholar 

  • Mutagoma M, Remera E, Sebuhoro D, Kanters S, Riedel DJ, Nsanzimana S (2016) The prevalence of syphilis infection and its associated factors in the general population of Rwanda: a national household-based survey. J Sex Transm Dis. https://doi.org/10.1155/2016/4980417

    Google Scholar 

  • Myint M, Bashiri H, Harrington R, Marra C (2004) Relapse of secondary syphilis after Benzathine Penicillin G: molecular analysis. Sex Transm Dis 31:196–199

    Article  Google Scholar 

  • Ophori EA, Atanunu O, Johnny EJ, Adu M (2010) Seroprevalence of syphilis in apparently healthy students from a tertiary institution in Benin City, Nigeria. Jpn J Infect Dis 63:437–439

    Google Scholar 

  • Oswalt R, Matsen K (1993) Sex, AIDS, and the use of condoms: a survey of compliance in college students. Psychol Rep 72(3):764–766

    Article  Google Scholar 

  • Oxman GL, Smolkowski K, Noell J (1996) Mathematical modelling of epidemic syphilis transmission: implication for syphilis control. Sex Transm Dis 23(1):30–39

    Article  Google Scholar 

  • Peterman TA, Furness BW (2015) Public health interventions to control syphilis. Sex Health 12:126–134

    Article  Google Scholar 

  • Pourbohloul B, Rekart ML, Brunham RC (2003) Impact of mass treatment on syphilis transmission: a mathematical modeling approach. Sex Transm Dis 30:297–305

    Article  Google Scholar 

  • Public Health Agency of Canada (2016) Canadian guidelines on sexually transmitted infections, section 5: management and treatment of specific infections—syphilis. www.phac.aspc.gc.ca. Accessed 28 May 2016

  • Saad-Roy CM, Shuai Z, van den Driessche P (2016) A mathematical model of syphilis transmission in an MSM population. Math Biosci 277:59–70

    Article  Google Scholar 

  • Saloojee H, Velaphi S, Goga Y, Afadapa N, Steen R, Lincetto O (2004) The prevention and management of congenital syphilis: an overview and recommendations. Bull WHO 82:424–30

    Google Scholar 

  • Smolak A, Rowley J, Nagelkerke N, Kassebaum NJ, Chico RM, Korenromp EL, Abu-Raddad LJ (2018) Trends and predictors of syphilis prevalence in the general population: global pooled analyses of 1103 prevalence measures including 136 million syphilis tests. Clin Infect Dis 66(8):1184–1191

    Article  Google Scholar 

  • Stamm LV (2010) Global challenge of antibiotic-resistant Treponema pallidum. Antimacrob Agents Chemother 54(2):583–589

    Article  Google Scholar 

  • Stoltey JE, Cohen SE (2015) Syphilis transmission: a review of the current evidence. Sex Health 12:103–109

    Article  Google Scholar 

  • This Day Newspaper (2016) Borno with highest cases of syphilis, 24 Mar 2016

  • Tuddenham S, Ghanem KG (2015) Emerging trends and persistent challenges in the management of adult syphilis. BMC Infect Dis 15:351

    Article  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  Google Scholar 

  • World Bank (2016) Life expectancy at birth. data.worldbank.org. Accessed 12 May 2016

  • World Health Organization (2014a) Eliminating congenital syphilis. www.who.int/reproductive-health/stis/syphilis.html. Accessed 6 Mar 2014

  • World Health Organization (2014b) Sexually transmitted infections: syphilis. www.data.euro.who.int. Assessed 17 Apr 2014

  • World Health Organization (2018) Sexual and reproductive health report: mother-to-child transmission of syphilis. www.who.int. Accessed 8 Apr 2018

  • Yang L-G, Tucker JD, Yang B, Shen S-Y, Sun X-F, Chen Y-F, Chen X-S (2010) Primary syphilis cases in Guangdong Province 1995–2008: opportunities for linking syphilis control and regional development. BMC Public Health 10:793–799

    Article  Google Scholar 

  • Zhou Y, Li X, Yang H, Hong Y, Fang X, Wang B, Stanton B (2012) Effect of condom-use measures in predicting sexually transmitted diseases: variation by individuals and contextual factors of sexual risk. Int J STD AIDS 23:27–34

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Okuonghae.

Appendices

Appendix 1: Proof of Theorem 3.1

Proof

Consider the following linear Lyapunov function

$$\begin{aligned} \mathcal {F}=g_1E+g_2I_p+g_3I_s+g_4L_e, \end{aligned}$$

where,

$$\begin{aligned} \begin{aligned} g_1&=\gamma _1\beta (1-p_c)(K_4K_7 + \gamma _3 K_8), \quad \\ g_2&=K_1\beta (1-p_c)(K_4K_7+\gamma _3K_8),\\ g_3&=K_1\beta (1-p_c)\{\gamma _3[(1-f)\alpha +\eta _l(K_{11}+\gamma _2)]+\eta _s(K_{11}+\gamma _2)K_4\},\\ g_4&=K_1\beta (1-p_c)\{\gamma _3[(1-f)\alpha +\eta _l(K_{11}+\gamma _2)]+\eta _l(K_{11}+\gamma _2)K_{10}\\&\quad +\alpha [\eta _s(\gamma _2+fK_{11})+(1+f)K_{10}]\}. \end{aligned} \end{aligned}$$
(6.1)

The Lyapunov derivative (where a dot represents differentiation with respect to time t) is given by:

$$\begin{aligned} \begin{aligned} \dot{\mathcal {F}}&=g_1\dot{E}+g_2\dot{I_p}+g_3\dot{I_s}+g_4\dot{L_e},\\&=g_1[ \lambda S_u + \sigma \lambda S_r - (\gamma _1 + \mu )E]+g_2[ \gamma _1 E-(\gamma _2+\tau _1+\mu )I_p+(1-f)\alpha L_e]\\&\quad +g_3[ \gamma _2 I_p -(\gamma _3+\tau _2+\mu )I_s + f\alpha L_e]+g_4[ \gamma _3I_s - (\gamma _4 +\tau _3+\mu )L_e-\alpha L_e],\\&=g_1\lambda [S_u+\sigma S_r]+[g_2\gamma _1-g_1(\gamma _1+\mu )]E+[g_3\gamma _2-g_2(\gamma _2+\tau _1+\mu )]I_p\\ {}&\quad + [g_4\gamma _3-g_3(\gamma _3+\tau _2+\mu )]I_s+[g_2(1-f)\alpha +f\alpha g_3-g_4(\gamma _4+\tau _3+\mu )-\alpha g_4]L_e,\\&=g_1\lambda [S_u+\sigma S_r]+[g_3\gamma _2-g_2(\gamma _2+\tau _1+\mu )]I_p+ [g_4\gamma _3-g_3(\gamma _3+\tau _2+\mu )]I_s\\ {}&\quad +[g_2(1-f)\alpha +f\alpha g_3-g_4(\gamma _4+\tau _3+\mu )-\alpha g_4]L_e,\\&=g_1\lambda [S_u+\sigma S_r]-\{\beta (1-p_c)[K_1(\gamma _2(\gamma _3 K_9 + K_4 K_{10}) \\&\quad + K_{11}(K_4 K_{10} + \gamma _3 K_{12})]\} (I_p + \eta _s I_s + \eta _l L_e),\\&=\beta (1-p_c)(I_p+\eta _s I_s+\eta _l L_e)\bigg \{\frac{g_1(S_u+\sigma S_r)}{N}-K_1[\gamma _2(\gamma _3 K_9 + K_4 K_{10}) \\&\quad +K_{11}(K_4 K_{10} + \gamma _3 K_{12})]\bigg \},\\&\le \beta (1-p_c)(I_p+\eta _s I_s+\eta _l L_e)\bigg \{g_1- K_1[\gamma _2(\gamma _3 K_9 + K_4 K_{10})\\&\quad + K_{11}(K_4 K_{10} + \gamma _3 K_{12})]\bigg \}, \left( \text {since}\quad \frac{(S_u+\sigma S_r)}{N} < 1 \quad \text {in}\quad \mathcal {D}\right) \\&=\beta (1-p_c)(I_p+\eta _s I_s+\eta _l L_e)\bigg \{ K_1[\gamma _2(\gamma _3 K_9 + K_4 K_{10})\\&\quad + K_{11}(K_4 K_{10} + \gamma _3 K_{12})]\bigg \}(\mathcal {R}_T-1). \end{aligned} \end{aligned}$$
(6.2)

Thus, \(\dot{\mathcal {F}}\le 0\) whenever \(\mathcal {R}_T\le 1\). Hence, \(\dot{\mathcal {F}}\le 0\) if \(\mathcal {R}_T \le 1\) with \(\dot{\mathcal {F}}=0\) if and only if \(I_p\) = \(I_s\) = \(L_e =\) 0. Therefore, \(\mathcal {F}\) is a Lyapunov function in \(\mathcal {D}\). Thus,

$$\begin{aligned} (E(t),I_p(t),I_s(t),L_e(t),L_l(t),I_t(t),R(t))\rightarrow (0,0,0,0,0,0,0,0) \end{aligned}$$

as \(t\rightarrow \infty\). Substituting \({E(t)=I_p(t)=I_s(t)=L_e(t)=L_l(t)=I_t(t)=R(t)=0}\) into the first two equation of the model (2.2) gives (\(S_u(t),S_r(t))\rightarrow (\frac{\Lambda }{\mu },0)\), as \(t\rightarrow \infty\). Hence, it follows from the LaSalle’s Invariance Principle (LaSalle and Lefschetz 1976), that

$$\begin{aligned} (S_u(t),S_r(t),E(t),I_p(t),I_s(t),L_e(t),L_l(t),I_t(t),R(t))\rightarrow \left( \frac{\Lambda }{\mu },0,0,0,0,0,0,0,0\right) , \end{aligned}$$

as \(t\rightarrow \infty\), for \(\mathcal {R}_T\le 1\). \(\square\)

Appendix 2: Proof of Theorem 3.2

Consider the model (2.2) with \(\omega = \alpha = 0\) and \(\eta _l = \eta _s = 1\), given by (3.2). Recall that \(\tilde{\mathcal {R}}_T = \mathcal {R}_T|_{\omega =\alpha =0,\eta _l=\eta _s=1}\). The infection rate (\(\lambda\)), given by (2.1), can be expressed at endemic steady-state as:

$$\begin{aligned} \lambda ^{**} = \frac{\beta (1-p_c)(I_p^{**}+ L_e^{**} + I_s^{**})}{N^{**}},\quad \text {with}\quad N^{**} = \frac{\Lambda }{\mu }. \end{aligned}$$
(7.1)

Solving the variables of the model (in this case, model (3.2)) at steady state gives:

$$\begin{aligned} \begin{aligned} S_u^{**}&=\frac{\Lambda }{\lambda ^{**} +\mu },\quad E^{**}=\frac{G_1}{M},\quad I_p^{**}=\frac{G_2}{M},\quad I_s^{**}=\frac{G_3}{M},\quad L_e^{**}=\frac{G_4}{M},\\ L_l^{**}&=\frac{G_5}{M},\quad I_t^{**}=\frac{G_6}{M},\quad R^{**} =\frac{G_7}{M}, \end{aligned} \end{aligned}$$
(7.2)

where,

$$\begin{aligned} \begin{aligned} G_1&=\lambda ^{**} \mu \Lambda (\mu +\lambda ^{**} \sigma ) (\gamma _2 (\gamma _3 (\mu +\gamma _4+\tau _3)+(\mu +\tau _2) (\mu +\gamma _4+\tau _3))\\ {}&\quad + (\mu +\tau _1) ((\mu +\tau _2) (\mu +\gamma _4+\tau _3)+\gamma _3 (\mu +\gamma _4+\tau _3))) (\mu +\gamma _5+\tau _4) (\mu +\tau _5),\\ G_2&=\lambda ^{**} \mu \Lambda (\mu +\lambda ^{**} \sigma )\gamma _1 ((\mu +\tau _2) (\mu +\gamma _4+\tau _3)\\&\quad +\gamma _3 (\mu +\gamma _4+\tau _3)) (\mu +\gamma _5+\tau _4) (\mu +\tau _5),\\ G_3&=\lambda ^{**} \mu \Lambda (\mu +\lambda ^{**} \sigma ) \gamma _1 \gamma _2 \left( \mu +\gamma _4+\tau _3\right) \left( \mu +\gamma _5+\tau _4\right) \left( \mu +\tau _5\right) ,\\ G_4&=\lambda ^{**} \mu \Lambda (\mu +\lambda ^{**} \sigma )\gamma _1 \gamma _2 \gamma _3 \left( \mu +\gamma _5+\tau _4\right) \left( \mu +\tau _5\right) ,\\ G_5&=\lambda ^{**} \mu \Lambda (\mu +\lambda ^{**} \sigma ) \gamma _1 \gamma _2 \gamma _3 \gamma _4 \left( \mu +\tau _5\right) ,\\ G_6&=\lambda ^{**} \mu \Lambda (\mu +\lambda ^{**} \sigma ) \gamma _1 \gamma _2 \gamma _3 \gamma _4 \gamma _5,\\ G_7&=\lambda ^{**} \Lambda (\mu +\lambda ^{**} \sigma ) \gamma _1 (\tau _1 ((\mu +\tau _2) (\mu +\gamma _4+\tau _3)\\&\quad +\gamma _3 (\mu +\gamma _4+\tau _3)) (\mu +\gamma _5+\tau _4) (\mu +\tau _5)\\&\quad +\gamma _2 (\tau _2 (\mu +\gamma _4+\tau _3) (\mu +\gamma _5+\tau _4) (\mu +\tau _5)\\&\quad + \gamma _3(\tau _3 (\mu +\gamma _5+\tau _4) (\mu +\tau _5)+\gamma _4 (\gamma _5 \tau _5+\tau _4 (\mu +\tau _5))))), \end{aligned} \end{aligned}$$
(7.3)

and,

$$\begin{aligned} \begin{aligned} M&=\mu (\lambda ^{**} +\mu ) (\mu (\mu +\lambda ^{**} \sigma ) (\gamma _2 (\gamma _3 (\mu +\gamma _4+\tau _3)+(\mu +\tau _2) (\mu +\gamma _4+\tau _3))\\&\quad +(\mu +\tau _1) ((\mu +\tau _2) (\mu +\gamma _4+\tau _3)+\gamma _3 (\mu +\gamma _4+\tau _3))) (\mu +\gamma _5+\tau _4) (\mu +\tau _5)\\&\quad +\gamma _1 (((\mu +\lambda ^{**} \sigma )\mu +(\mu +\lambda ^{**} \sigma ) \tau _1) ((\mu +\tau _2) (\mu +\gamma _4+\tau _3)\\&\quad +\gamma _3 (\mu +\gamma _4+\tau _3))(\mu +\gamma _5+\tau _4) (\mu +\tau _5)+\gamma _2 (((\mu +\lambda ^{**} \sigma )\mu \\&\quad +(\mu +\lambda ^{**} \sigma ) \tau _2) (\mu +\gamma _4+\tau _3) (\mu +\gamma _5+\tau _4)(\mu +\tau _5)+\gamma _3 (((\mu +\lambda ^{**} \sigma ) \mu \\&\quad +(\mu +\lambda ^{**} \sigma ) \tau _3) (\mu +\gamma _5+\tau _4) (\mu +\tau _5)+\gamma _4 (((\mu +\lambda ^{**} \sigma ) (\mu +\omega )\\&\quad +(\mu +\lambda ^{**} \sigma ) \tau _4) (\mu +\tau _5)+\gamma _5 ((\mu +\lambda ^{**} \sigma )\mu +(\mu +\lambda ^{**} \sigma ) \tau _5)))))). \end{aligned} \end{aligned}$$
(7.4)

Substituting the expressions in (7.2) into (7.1) (noting the expressions in (7.3) and (7.4)) results in the following polynomial (in \(\lambda ^{**}\)):

$$\begin{aligned} f(\lambda ^{**})=a_0({\lambda ^{**}})^2+ b_0\lambda ^{**} + c_0 = 0, \end{aligned}$$
(7.5)

where,

$$\begin{aligned} \begin{aligned} a_0&= \Lambda \mu \sigma [\mu (\gamma _2 (\gamma _3 (\mu +\gamma _4+\tau _3)+ (\mu +\tau _2) (\mu +\gamma _4+\tau _3))\\&\quad +(\mu +\tau _1)((\mu +\tau _2) (\mu +\gamma _4+\tau _3)+\gamma _3 (\mu +\gamma _4+\tau _3))) (\mu +\gamma _5+\tau _4) (\mu +\tau _5)\\&\quad +\gamma _1 ((\mu +\tau _1)((\mu +\tau _2) (\mu +\gamma _4+\tau _3)+\gamma _3 (\mu +\gamma _4+\tau _3))(\mu +\gamma _5+\tau _4) (\mu +\tau _5)\\&\quad +\gamma _2 ((\mu +\tau _2) (\mu +\gamma _4+\tau _3) (\mu +\gamma _5+\tau _4) (\mu +\tau _5)+\gamma _3 ((\mu +\tau _3) (\mu +\gamma _5+ \tau _4) (\mu +\tau _5)\\&\quad +\gamma _4 ((\mu +\tau _4) (\mu +\tau _5)+\gamma _5 (\mu +\tau _5)))))] > 0,\\ b_0&=\Lambda \mu (\mu (\sigma +1)\mu (\gamma _2 (\gamma _3 (\mu +\gamma _4+\tau _3)+(\mu +\tau _2) (\mu +\gamma _4+\tau _3))\\&\quad +(\mu +\tau _1) ((\mu +\tau _2) (\mu +\gamma _4+\tau _3)+\gamma _3 (\mu +\gamma _4+\tau _3))) (\mu +\gamma _5+\tau _4) (\mu +\tau _5)\\&\quad +\gamma _1 (((\mu (\sigma +1)-\beta \sigma (1-p_c))\mu + (\sigma \mu +\mu ) \tau _1) ((\mu +\tau _2) (\mu +\gamma _4+\tau _3)\\&\quad +\gamma _3 (\mu +\gamma _4+\tau _3)) (\mu +\gamma _5+\tau _4)(\mu +\tau _5)+\gamma _2 ((\mu ^2 (\sigma +1)\\&\quad - \beta \sigma (1-p_c) \eta _s \mu +(\sigma \mu +\mu ) \tau _2) (\mu +\gamma _4+\tau _3) (\mu +\gamma _5+\tau _4) (\mu +\tau _5)\\&\quad +\gamma _3 ((\mu ^2 (\sigma +1) - \beta \sigma (1-p_c) \eta _l \mu +(\sigma \mu +\mu ) \tau _3) (\mu +\gamma _5+\tau _4) (\mu +\tau _5)\\&\quad +\gamma _4 ((\mu ^2 (\sigma +1) +(\sigma \mu +\mu ) \tau _4) (\mu +\tau _5)+\gamma _5 (\mu ^2 (\sigma +1) + (\sigma \mu +\mu ) \tau _5)))))),\\ c_0&=\Lambda \mu ^3 \left( \mu +\gamma _5+\tau _4\right) \left( \mu +\tau _5\right) (1-\tilde{\mathcal {R}}_T). \end{aligned} \end{aligned}$$
(7.6)

It follows from (7.6) that, when \(\tilde{\mathcal {R}}_T > 1\), the coefficient \(c_0\) is negative. Since \(a_0 > 0\), regardless of the sign of \(b_0\), the polynomial (7.5) will have only one positive root when \(\tilde{\mathcal {R}}_T > 1\). Hence, the reduced model (3.2) has a unique endemic equilibrium whenever \(\tilde{\mathcal {R}}_T > 1\).

Remark 7.1

It can be seen that the polynomial (7.5) will not have a positive root when \(\tilde{\mathcal {R}}_T < 1\). In particular, it follows from (7.5), with (7.6), that when \(\tilde{\mathcal {R}}_T < 1\), the coefficient \(c_0\) is positive. For the sign of the coefficient \(b_0\), when \(\tilde{\mathcal {R}}_T < 1\), it is convenient to solve for \(b_0\) when \(\tilde{\mathcal {R}}_T < 1\). It should, first of all, be noted that, the requirement \(\tilde{\mathcal {R}}_T < 1\) implies that

$$\begin{aligned} \beta = \beta _c <\frac{K_1[\gamma _2(\gamma _3 K_9 + K_4 K_{10}) + K_{11}(K_4 K_{10} + \gamma _3 K_{12})]}{\gamma _1(1-p_c)(K_4K_7 + \gamma _3 K_8)}. \end{aligned}$$
(7.7)

Substituting (7.7) into the expression for \(b_0\) in (7.6), and simplifying, gives

$$\begin{aligned} \begin{aligned} b_0&= \Lambda \mu [\mu ^2 (\gamma _2 (\gamma _3 (\mu +\gamma _4+\tau _3)+(\mu +\tau _2) (\mu +\gamma _4+\tau _3))+(\mu +\tau _1) ((\mu +\tau _2)\\ {}&(\mu +\gamma _4+\tau _3)+\gamma _3 (\mu +\gamma _4+\tau _3))) (\mu +\gamma _5+\tau _4) \\ {}&(\mu +\tau _5)+\gamma _1 ((\mu ^2 + \mu \tau _1) ((\mu +\tau _2) (\mu +\gamma _4+\tau _3)\\ {}&+\gamma _3 (\mu +\gamma _4+\tau _3)) (\mu +\gamma _5+\tau _4) (\mu +\tau _5)\\ {}&+\gamma _2 ((\mu ^2 + \mu \tau _2) (\mu +\gamma _4+\tau _3) (\mu +\gamma _5+\tau _4) \\ {}&(\mu +\tau _5)+\gamma _3 ((\mu ^2 + \mu \tau _3)\\ {}&(\mu +\gamma _5+\tau _4) (\mu +\tau _5)+\gamma _4 ((\mu ^2 + \mu \tau _4) (\mu +\tau _5)+\gamma _5 (\mu ^2 \\ {}&+\mu \tau _5)))))]>0 \quad \text {since}\quad 0<\sigma <1. \end{aligned} \end{aligned}$$
(7.8)

Thus, for the case with \(\tilde{\mathcal {R}}_T < 1\), the quadratic (7.5) has no positive root when \(\tilde{\mathcal {R}}_T < 1\) (since the coefficients \(a_0\), \(b_0\) and \(c_0\) are positive in this case); hence, there is no endemic equilibrium point when \(\tilde{\mathcal {R}}_T < 1\).

To prove the global asymptotic stability of the unique endemic equilibrium of the reduced model (3.2), consider the following nonlinear Lyapunov function (of Goh-Volterra type) defined in \(\mathcal {D}_r\backslash \mathcal {D}_0\).

$$\begin{aligned} \begin{aligned} V&= S_u - S_u^{**}-S_u^{**} \ln \frac{S_u}{S_u^{**}} + E - E^{**} -E^{**}\ln \frac{E}{E^{**}} \\&+ \frac{\hat{\beta }S_u^{**}[K_5(\gamma _3+\tau _2 + \mu ) + \gamma _2(K_5 + \gamma _3)]}{K_5(\gamma _2 + \tau _1 + \mu )(\gamma _3 + \tau _2 + \mu )}\left( I_p - I_p^{**} -I_p^{**}\ln \frac{I_p}{I_p^{**}}\right) \\&+ \frac{\hat{\beta }S_u^{**}[K_4 + \gamma _3]}{K_5(\gamma _3 +\tau _2 +\mu )}\left( I_s - I_s^{**}-I_s^{**}\ln \frac{I_s}{I_s^{**}}\right) +\frac{\beta S_u^{**}}{K_5}\left( L_e - L_e^{**} -L_e^{**} \ln \frac{L_e}{L_e^{**}}\right) \end{aligned} \end{aligned}$$
(7.9)

where, now, \(K_5 = \gamma _4 + \tau _3 + \mu\). The Lyapunov derivative is

$$\begin{aligned} \begin{aligned} \dot{V}&= \left( 1-\frac{S_u^{**}}{S_u}\right) \dot{S_u} + \left( 1 - \frac{E^{**}}{E}\right) \dot{E}\\ {}&\quad + \frac{\hat{\beta }S_u^{**}[K_5(\gamma _3 + \tau _2 + \mu )+\gamma _2(K_5 + \gamma _3)]}{K_5(\gamma _2 + \tau _1 +\mu )(\gamma _3 + \tau _2 +\mu )}\left( 1-\frac{I_p^{**}}{I_p}\right) \dot{I}_p\\&\quad + \frac{\beta S_u^{**}[K_4 + \gamma _3]}{K_5(\gamma _2 + \tau _2 + \mu )}\left( 1 - \frac{I_s^{**}}{I_s}\right) \dot{I}_s+ \frac{\beta S_u^{**}}{K_5}\left( 1 - \frac{L_e^{**}}{L_e}\right) \dot{L}_e. \end{aligned} \end{aligned}$$
(7.10)

Substituting the derivatives in (3.2) into (7.10) gives

$$\begin{aligned} \begin{aligned} \dot{V}&= \left( 1-\frac{S_u^{**}}{S_u}\right) \left( \Lambda -\hat{\beta } S_u (I_p + I_s + L_e)-\mu S_u\right) \\&\quad + \left( 1 - \frac{E^{**}}{E}\right) \left( \hat{\beta } S_u (I_p + I_s + L_e) - (\gamma _1 + \mu )E \right) \\ {}&\quad + \frac{\hat{\beta }S_u^{**}[K_5(\gamma _3 + \tau _2 + \mu )+\gamma _2(K_5 + \gamma _3)]}{K_5(\gamma _2 + \tau _1 +\mu )(\gamma _3 + \tau _2 +\mu )}\left( 1-\frac{I_p^{**}}{I_p}\right) ( \gamma _1 E-(\gamma _2+\tau _1+\mu )I_p)\\ {}&\quad + \dfrac{\beta S_u^{**}[K_4 + \gamma _3]}{K_5(\gamma _2 + \tau _2 + \mu )}\left( 1 - \dfrac{I_s^{**}}{I_s}\right) \left( \gamma _2 I_p -(\gamma _3+\tau _2+\mu )I_s \right) \\&\quad + \frac{\beta S_1^{**}}{K_5}\left( 1 - \frac{L_e^{**}}{L_e}\right) \left( \gamma _3I_s - (\gamma _4 +\tau _3+\mu )L_e\right) . \end{aligned} \end{aligned}$$
(7.11)

It follows from the equations of the reduced model (3.2), at steady-state, that

$$\begin{aligned} \begin{aligned} \Lambda&= \hat{\beta } S_u^{**} (I_p^{**} + I_s^{**} + L_e^{**}) + \mu S_u^{**},&\\ (\gamma _1 + \mu )E^{**}&= \hat{\beta } S_u^{**} (I_p^{**} + I_s^{**} + L_e^{**}),&\\ (\gamma _2 + \tau _1 + \mu )I_p^{**}&= \gamma _1 E^{**},&\\ (\gamma _3 + \tau _2 + \mu )I_s^{**}&= \gamma _2 I_p^{**},&\\ K_5 L_e^{**}&= \gamma _3 I_s^{**}. \end{aligned} \end{aligned}$$
(7.12)

Substituting the expressions in (7.12) into (7.11) gives

$$\begin{aligned} \begin{aligned} \dot{V}&= \mu S_u^{**} \left( 2 - \frac{S_u^{**}}{S_u} - \frac{S_u}{S_u^{**}}\right) + \hat{\beta }S_u^{**} I_p^{**} \left( 3 - \frac{S_u^{**}}{S_u} - \frac{E I_p^{**}}{E^{**}I_p} - \frac{E^{**}S_u I_p}{E S_u^{**} I_p^{**}} \right) \\&\quad + \hat{\beta }S_u^{**} I_p^{**} \left( 4 - \frac{S_u^{**}}{S_u} - \frac{I_p I_s^{**}}{I_s I^{**}_p} - \frac{E I_p^{**}}{E^{**}I_p} - \frac{E^{**}S_u I_s}{E S_u^{**} I_s^{**}} \right) \\&\quad + \hat{\beta }S_u^{**} L_e^{**} \left( 5 - \frac{S_u^{**}}{S_u} - \frac{I_p I_s^{**}}{I_s I^{**}_p} - \frac{E I_p^{**}}{E^{**}I_p} - \frac{E^{**}S_u L_e}{E S_u^{**} L_e^{**}} - \frac{L_e^{**}I_s}{I_S^{**} L_e} \right) , \end{aligned} \end{aligned}$$
(7.13)

from which it follows that, since the arithmetic mean exceeds the geometric mean,

$$\begin{aligned} \left( 2 - \frac{S_u^{**}}{S_u} - \frac{S_u}{S_u^{**}}\right) \le 0 , \left( 3 - \frac{S_u^{**}}{S_u} - \frac{E I_p^{**}}{E^{**}I_p} - \frac{E^{**}S_u I_p}{E S_u^{**} I_p^{**}} \right)&\le {} 0 ,\\ \left( 4 - \frac{S_u^{**}}{S_u} - \frac{I_p I_s^{**}}{I_s I^{**}_p} - \frac{E I_p^{**}}{E^{**}I_p} - \frac{E^{**}S_u I_s}{E S_u^{**} I_s^{**}} \right)&\le {} 0, \,\hbox {and}\\ \left( 5 - \frac{S_u^{**}}{S_u} - \frac{I_p I_s^{**}}{I_s I^{**}_p} - \frac{E I_p^{**}}{E^{**}I_p} - \frac{E^{**}S_u L_e}{E S_u^{**} L_e^{**}} - \frac{L_e^{**}I_s}{I_S^{**} L_e} \right)&\le {} 0. \end{aligned}$$

Thus, \(\dot{V} \le 0\) for \(\tilde{\mathcal {R}}_T > 1\). Hence, V is a lyapunov function for the reduced model (3.2) in \(\mathcal {D}_r\backslash \mathcal {D}_0\). The proof is concluded as in the proof of Theorem 3.1. \(\square\)

Appendix 3: Cumulative Number of New Cases When \(\eta _s < 1\)

Here, we present some numerical simulations of the model (2.2) showing the cumulative number of new syphilis cases when \(\eta _s < 1\). See Sect. 4.3 for discussions on the figures shown in this “Appendix”.

Fig. 10
figure 10

Simulations of the model (2.2) for the treatment-only strategy, showing the cumulative number of new cases, as a function of time, where treatment is applied to only one stage of syphilis infection while there are no treatments for the other stages of infection, in the absence of condom use. a Low treatment rate and b high treatment rate. Parameter values used are as in Table 2, with \(\beta = 0.0069\), \(c = \varepsilon _c = 0\) and \(\eta _s = 0.5\)

Fig. 11
figure 11

Simulations of the model (2.2) for the treatment-only strategy, showing the cumulative number of new cases, as a function of time, in the absence of condom use, varying treatment rate for the targeted infection group while the treatment rates for the other four infected groups are set to zero. Parameter values used are as in Table 2, with \(\beta = 0.0069\), \(c = \varepsilon _c = 0\) and \(\eta _s = 0.5\). a\(\tau _1\), b\(\tau _2\) and c\(\tau _3\)

Fig. 12
figure 12

Simulations of the model (2.2) for the universal strategy, showing the cumulative number of new cases, as a function of time, in the presence of condom use, varying treatment rate for the targeted infection group, while treatment rates for the other four infected groups are set to zero. Parameter values used are as in Table 2, with \(\beta = 0.0069\), \(c = 0.54\), \(\varepsilon _c = 0.8\) and \(\eta _s = 0.5\). a\(\tau _1\), b\(\tau _2\) and c\(\tau _3\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuonghae, D., Gumel, A.B., Ikhimwin, B.O. et al. Mathematical Assessment of the Role of Early Latent Infections and Targeted Control Strategies on Syphilis Transmission Dynamics. Acta Biotheor 67, 47–84 (2019). https://doi.org/10.1007/s10441-018-9336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-018-9336-9

Keywords

Navigation