Skip to main content
Log in

Quaternion-Based Texture Analysis of Multiband Satellite Images: Application to the Estimation of Aboveground Biomass in the East Region of Cameroon

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Within the last decade, several approaches using quaternion numbers to handle and model multiband images in a holistic manner were introduced. The quaternion Fourier transform can be efficiently used to model texture in multidimensional data such as color images. For practical application, multispectral satellite data appear as a primary source for measuring past trends and monitoring changes in forest carbon stocks. In this work, we propose a texture-color descriptor based on the quaternion Fourier transform to extract relevant information from multiband satellite images. We propose a new multiband image texture model extraction, called FOTO++, in order to address biomass estimation issues. The first stage consists in removing noise from the multispectral data while preserving the edges of canopies. Afterward, color texture descriptors are extracted thanks to a discrete form of the quaternion Fourier transform, and finally the support vector regression method is used to deduce biomass estimation from texture indices. Our texture features are modeled using a vector composed with the radial spectrum coming from the amplitude of the quaternion Fourier transform. We conduct several experiments in order to study the sensitivity of our model to acquisition parameters. We also assess its performance both on synthetic images and on real multispectral images of Cameroonian forest. The results show that our model is more robust to acquisition parameters than the classical Fourier Texture Ordination model (FOTO). Our scheme is also more accurate for aboveground biomass estimation. We stress that a similar methodology could be implemented using quaternion wavelets. These results highlight the potential of the quaternion-based approach to study multispectral satellite images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Barbier N, Couteron P, Proisy C, Malhi Y, Gastellu-Etchegorry J-P (2010) The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forest”. Glob Ecol Biogeogr 19:72–84

    Article  Google Scholar 

  • Barbier N, Couteron P, Gastellu-Etchegorry J-P, Proisy C (2012) Linking canopy images to forest structural parameters: potential of a modeling framework. Ann For Sci 69:305–311. https://doi.org/10.1007/s13595-011-0116-9

    Article  Google Scholar 

  • Basak D, Pal S, Patranabis DC (2007) Support vector regression. Neural Inf Process Lett Rev 11:203–224

    Google Scholar 

  • Basuki TM, Van Laake PE, Skidmore AK, Hussin YA (2009) Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manag 257:1684–1694. https://doi.org/10.1016/j.foreco.2009.01.027

    Article  Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc Biol Sci 359:409–420

    Article  Google Scholar 

  • Chave J, Rejou-Mechain M, Burquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martinez-Yrizar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pelissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G (2014) Improved allometric models to estimate the above ground biomass of tropical trees. Glob Change Biol. https://doi.org/10.1111/gcb.12629

    Google Scholar 

  • Chen CH, Pau LF, Wang PSP (1998) The handbook of pattern recognition and computer vision, 2nd edn. World Scientific Publishing Co, Singapore, pp 207–248

    Google Scholar 

  • Cheng HD, Jiang XH, Sun Y, Wang Jing Li (2001) Color images segmentation: advances and prospects. Pattern Recogn 34:2259–2281. https://doi.org/10.1016/S0031-3203(00)00149-7

    Article  Google Scholar 

  • Couteron P (2002) Quantifying change in patterned semi-arid vegetation by Fourier analysis of digitized aerial photographs. Remote Sens 23:3407–3425

    Article  Google Scholar 

  • Couteron P, Raphael P, Eric A, Domonique P (2005) Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. J Appl Ecol 42:1121–1128

    Article  Google Scholar 

  • Dengsheng L (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27:297–1328

    Google Scholar 

  • Dial G, Bowen H, Gerlach F, Grodecki J, Oleszczuk R (2003) IKONOS satellite imagery, and products. Remote Sens Environ 88:23–36

    Article  Google Scholar 

  • Ekoungoulou R, Liu X, Loumeto JJ, Ifo SA, Bocko YE, Koula FE, Niu S (2014) Tree allometry in tropical forest of Congo for carbon stocks estimation in aboveground biomass. Open J For 4(05):481

    Google Scholar 

  • Ekoungoulou R, Niu S, Loumeto JJ, Ifo SA, Bocko YE, Mikieleko FEK, Liu X (2015) Evaluating the carbon stock in above-and below-ground biomass in a moist Central African forest. Sci Educ 2:51–59

    Google Scholar 

  • Ell TA, Sangwine SJ (2007) Hypercomplex Fourier transforms of color images. IEEE Trans Image Process 16:22–35

    Article  Google Scholar 

  • Ell TA, Le Bihan N, Sangwine SJ (2014) Quaternion Fourier transforms for signal and image processing. Wiley, New York. ISBN 978-1-84821-478-1

    Book  Google Scholar 

  • Fayolle A, Doucet JL, Gillet JF, Bourland N, Lejeune P (2013) Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. For Ecol Manag 305:29–37

    Article  Google Scholar 

  • Feldpausch TR, Lloyd J, Lewis SL, Brienen RJ, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, Banin L, Abu Salim K, Affum-Baffoe K, Alexiades M (2012) Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9:3381–3403. https://doi.org/10.5194/bg-9-3381-2012

    Article  Google Scholar 

  • Fernandez-Maloigne C, Robert-Inacio F, Macaire L (2012) Digital color imaging. Wiley, New York. ISBN 978-1-84821-347-0

    Book  Google Scholar 

  • Gaia VL, Qi C, Jeremy AL, David AC, Del Frate Fabio, Leila G, Francesco P, Riccardo V (2014) Aboveground biomass estimation in an African tropical forest with lidar and hyperspectral data. J Photogramm Remote Sens 89:49–58

    Article  Google Scholar 

  • Gastellu-Etchegorry JP (2008) 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes. Meteorol Atmos Phys 102:187–207

    Article  Google Scholar 

  • Goetz SJ, Alessandro B, Nadine TL, Tracy J, Wayne W, Josef K, Richard AH, Mindy S (2009) Mapping and monitoring carbon stocks, with satellite observations: a comparison of methods. Carbon Balance Manag 4(2):1–7

    Google Scholar 

  • Gong Z, Sangram G, Ramakrishna RN, Michael AW, Cristina M, Hirofumi H, Weile W, Sassan S, Yifan Yu, Myneni Ranga B (2014) Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sens Environ 151:44–56

    Article  Google Scholar 

  • Hamey Leonord GC (2015) A functional approach to border handling in image processing. In: 2015 international conference on digital image computing techniques and application, DICTA 2015, pp 15–22. https://doi.org/10.1109/dicta.2015.7371214

  • Hamilton William R (1866) Elements of quaternions. Longmans, Green and Co., London

    Google Scholar 

  • Hunter MO, Keller M, Victoria D, Morton DC (2013) Tree height and tropical forest biomass estimation. Biogeosciences 10:8385–8399

    Article  Google Scholar 

  • Karush W (1939) Minima of functions of several variables with inequalities as side constraints. Master’s thesis, Department of Mathematics, University of Chicago

  • Kearsley E, De Haulleville T, Hufkens K, Kidimbu A, Toirambe B, Baert G, Verbeeck H (2013) Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat Commun. https://doi.org/10.1038/ncomms3269

    Google Scholar 

  • Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK (2001) Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput 13:637–649

    Article  Google Scholar 

  • Ketterings QM, Coe R, van Noordwijk M, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manag 146:199–209

    Article  Google Scholar 

  • Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceedings 2nd Berkeley symposium on mathematical statistics and probabilities. University of California Press, Berkeley, pp 481–492

  • Luccheseyz L, Mitray SK (2001) Color image segmentation: a state-of-the-art survey. Proc Indian Natl Sci Acad 67:207–221

    Google Scholar 

  • Meister L, Schaeben H (2005) A concise quaternion geometry of rotations. Math Methods Appl Sci 28:101–126

    Article  Google Scholar 

  • Mitchard ET, Saatchi SS, Baccini A, Asner GP, Goetz SJ, Harris NL, Brown S (2013) Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manag 8:1–13

    Article  Google Scholar 

  • Moxey CE, Sangwine SJ, Ell T (2003) Hypercomplex correlation techniques for vector images. IEEE Trans Signal Process 51:1941–1953

    Article  Google Scholar 

  • Mugglestone MA, Renshaw E (1996) A practical guide to the spectral analysis of spatial point processes. Comput Stat Data Anal 21:43–65

    Article  Google Scholar 

  • Nagao M, Matsuyama T (1979) Edge preserving smoothing. Comput Graph Image Process 9:394–407

    Article  Google Scholar 

  • Noor AI, Mokhtar MH, Rafiqul ZK, Pramod KM (2012) Understanding color model: a review. J Sci Technol 2(265):275

    Google Scholar 

  • Pei S, Cheng CM (1996) A novel block truncation coding of color images by using quaternion-moment preserving principle. IEEE Int Symp Circuits Syst Atlanta 2:684–687

    Google Scholar 

  • Pei S, Ding J, Chang J (2001) Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2D complex FFT. IEEE Trans Signal Process 49:2783–2797. https://doi.org/10.1109/78.960426

    Article  Google Scholar 

  • Picard N, Bosela FB, Rossi V (2014) Reducing the error in biomass estimates strongly depends on model selection. Ann For Sci 72:811–823

    Article  Google Scholar 

  • Ploton P, Pélissier R, Proisy C, Flavenot T, Barbier N, Rai SN, Couteron P (2012) Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecol Appl 22:993–1003

    Article  Google Scholar 

  • Proisy C, Couteron P, Fromard F (2007) Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images. Remote Sens Environ 109:379–392

    Article  Google Scholar 

  • Re DS, Engel VL, Sousa OLM, Blanco JLA (2015) Tree allometric equations in mixed forest plantations for the restoration of seasonal semi deciduous forest. CERNE 21:133–140. https://doi.org/10.1590/01047760201521011452

    Article  Google Scholar 

  • Roy PS, Shirish A (1996) Biomass estimation using satellite remote sensing data an investigation on possible approaches for natural forest. J Biosci 21:535–561

    Article  Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ET, Salas W, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 108:9899–9904

    Article  Google Scholar 

  • Sangwine SJ (1996) Fourier transforms of colour images using quaternions or hypercomplex, numbers. Electron Lett 32:1979–1989

    Article  Google Scholar 

  • Sangwine SJ, Ell TA (1999) Hypercomplex auto-and cross- correlation of color images. In: IEEE international conference on image processing (ICIP’99), Kobe, Japan, pp 319–322

  • Sangwine SJ, Le Bihan N (2013) Quaternion toolbox for Matlab®, Ver.2 with support for octonions, Software Library downloaded 03 June 2013 from http://qtfm.sourceforge.net/

  • Shi L, Funt B (2005) Quaternion colour texture. In: Proceedings 10th congress of the international color association, Granada

  • Shuy MJ, Parkkinen J (2012) Fundamentals of color. In: C. Fernandez-Maloigne (ed) Advanced color images processing and analysis, chapter 1. Springer, New York

  • Smola AJ, Schölkopf B (1998) A tutorial on support vector regression. Stat Comput 14:199–222

    Article  Google Scholar 

  • Tapamo H, Mfopou A, Ngonmang B, Couteron P, Monga O (2014) Linear versus non-linear methods: a comparative study for forest above ground biomass estimation from texture analysis of satellite image. ARIMA 18:114–131

    Google Scholar 

  • Thenkabail PS, Enclona EA, Ashton MS, Legg C, Minko JDD (2004) Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sens Environ 90:23–43

    Article  Google Scholar 

  • Ustin SL, Gamon JA (2010) Remote sensing of plant functional types. New Phytol. https://doi.org/10.1111/j.1469-8137.2010.03284.x

    Google Scholar 

  • Vapnik VN (1995) The nature of statistic learning theory. Springer, Berlin

    Book  Google Scholar 

  • Vapnik V, Golowich SE, Smola A (1997) Support vector method for function approximation regression estimation and signal processing. Adv Neural Inf Process Syst 9:281–289

    Google Scholar 

  • Verhegghen A, Mayaux P, De Wasseige C, Defourny P (2012) Mapping Congo basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation. Biogeosciences 9:5061–5079

    Article  Google Scholar 

  • Vieilledent G, Vaudry R, Andriamanohisoa SF, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Rakotoarivony CB, Ebeling J, Rasamoelina M (2012) A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl 22:572–583

    Article  Google Scholar 

  • Willmot CJ, Robeson SM, Matsuura K, Ficklin DL (2015) Assessment of three dimensionless measures of model performance. Environ Model Softw 73:167–173

    Article  Google Scholar 

  • Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094. https://doi.org/10.1002/joc.2419

    Article  Google Scholar 

  • Xu Z, Gao Y, Jin Y (2014) Application of an optimized SVR model of machine learning. J Multimed Ubiquitous Eng 9:67–80

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Pierre Ploton for his important contribution to data collection and for fruitful discussions on tropical forest structures. Many thanks go also to Nicolas Barbier, Nicolas Picard and Bonaventure Sonke for their expertise about tropical forest trees, dendrometric properties, forest dynamic processes and radiometric properties of trees, and to the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. Finally, they thank all the members of the SAM’s team of UMMISCO-Cameroon. The BIOFORAC Project and the PDI (Programme Doctoral International) of IRD and Paris 6 University have funded this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Monga.

Appendices

Appendix 1

We present here a complete scheme to compute the polar form of any quaternion numbers.

In Sect. 3.3, when dealing with quaternion algebra, we have shown how to compute the polar representation of a quaternion only in the case where it is non-equal to zero. We present here how to compute the polar form when either the scalar or the modulus of its vector part is equal to zero.

Let

$$q = q_{0} + q_{1} i + q_{2} j + q_{3} k,$$
(A.1)

with \(\left| q \right| \ne 0\). The polar representation of the quaternion \(q\) can be expressed as:

$$q = \left| q \right|e^{\alpha } ,$$
(A.2)

where α is a pure quaternion with \(\left| {V \left( \alpha \right)} \right| \ne 0\). It follows that:

  1. 1.

    if \(S\left( q \right) = q_{0} = 0\) then

    • \(q = \left| q \right|e^{{\left( {\frac{\pi }{2} + 2k\pi } \right).\frac{V\left( q \right)}{\left| q \right|}}} ,\,{\text{for}},\quad k \ge 0, \;k \in {\mathbb{N}}.\)

    • \(q = \left| q \right|e^{{ - \left( {\frac{3\pi }{2} + 2k\pi } \right) \frac{V\left( q \right)}{\left| q \right|} }} ,\;{\text{for}}, \quad k \ge 0,\;k \in {\mathbb{N}}.\)

  2. 2.
    $$if\,S\left( q \right) = q_{0} \ne 0$$

    then

    1. a.

      if \(V \left( q \right) = 0\), then

      1. i.

        if \(S\left( q \right) > 0\) then

        $$q = S\left( q \right) = \left| q \right|e^{\alpha } ,$$
        (A.3)

        with \(S\left( \alpha \right) = 0\) and \(\left| {V \left( \alpha \right)} \right| = 2\pi k,\;{\text{for}}\quad k \ge 1,\;k \in {\mathbb{N}}.\)

      2. ii.

        if \(S\left( q \right) < 0\) then

        $$q = S\left( q \right) = \left| q \right|e^{\alpha } ,$$
        (A.4)

        with \(S\left( \alpha \right) = 0\) and \(\left| {V \left( \alpha \right)} \right| = \left( {2k + 1} \right)\pi , \,{\text{for}} \,k \ge 0,k \in {\mathbb{N}}.\)

    2. b.

      if \(V \left( q \right) \ne 0\) then

      1. i.

        if \({ \cos }\left( {\left| {V \left( q \right)} \right|} \right) > 0\) and \({ \sin }\left( {\left| {V \left( q \right)} \right|} \right) > 0\) then

        $$q = \left| q \right|e^{{ \arctan \left( { \frac{V\left( q \right)}{S\left( q \right)}} \right) \cdot \frac{V\left( q \right)}{\left| q \right|}}} ,$$
        (A.5)

        with \(\arctan \left( {\frac{{\left| {V\left( q \right)} \right|}}{S\left( q \right)}} \right) \in \left( {2k\pi ,\frac{\pi }{2} + 2k\pi } \right), \quad k \ge 0,\;k \in {\mathbb{N}}.\)

      2. ii.

        If \({\text{cos}}\left( {\left| {V\left( q \right)} \right|} \right) < 0\;{\text{and}}\;\sin \left( {\left| {V \left( q \right)} \right|} \right) > 0\)

        $$q = \left| q \right|e^{{\arctan \left( {\frac{{\left| {V\left( q \right)} \right|}}{S\left( q \right)}} \right) \cdot \frac{V\left( q \right)}{\left| q \right|}}} ,$$
        (A.6)

        with \(\arctan \left( { \frac{{\left| {V\left( q \right)} \right|}}{S\left( q \right)}} \right) \in \left( {\frac{\pi }{2} + 2k\pi ,\left( {2k + 1} \right)\pi } \right),\quad k \ge 0,\;k \in {\mathbb{N}}.\)

      3. iii.

        if \(\cos \left( {\left| {V \left( q \right)} \right|} \right) < 0\;{\text{and}}\;{ \sin }\left( {\left| {V \left( q \right)} \right|} \right) < 0\)

        $$q = \left| q \right|e^{{\arctan \left( { - \frac{{\left| {V\left( q \right)} \right|}}{S\left( q \right)}} \right) \cdot - \frac{V\left( q \right)}{\left| q \right|}}} ,$$
        (A.7)

        with \(\arctan \left( { - \frac{{\left| {V\left( q \right)} \right|}}{S\left( q \right)}} \right) \in \left( {\pi + 2k\pi ,\frac{3\pi }{2} + 2k\pi } \right),\quad k \ge 0,\;k \in {\mathbb{N}}.\)

      4. iv.

        if \(\cos \left( {\left| {V \left( q \right)} \right|} \right) > 0\;{\text{and}}\;\sin \left( {\left| {V \left( q \right)} \right|} \right) < 0\)

        $$q = \left| q \right|e^{{ \arctan \left( { - \frac{{\left| {V\left( q \right)} \right|}}{S\left( q \right)}} \right) \cdot \frac{V\left( q \right)}{\left| q \right|} }} ,$$
        (A.8)

        with \(\arctan \left( { - \frac{{\left| {V\left( q \right)} \right|}}{S\left( q \right)}} \right) \in \left( {\frac{3\pi }{2} + 2k\pi , 2\left( {k + 1} \right)\pi } \right), \quad k \ge 0,\;k \in {\mathbb{N}}.\)

Appendix 2a

We describe here below an algorithm to convert a RGB-color image to Lab color space.

Appendix 2b

We present here an algorithm to convert a RGB-color image to HSV color space.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djiongo Kenfack, C.B., Monga, O., Mpong, S.M. et al. Quaternion-Based Texture Analysis of Multiband Satellite Images: Application to the Estimation of Aboveground Biomass in the East Region of Cameroon. Acta Biotheor 66, 17–60 (2018). https://doi.org/10.1007/s10441-018-9317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-018-9317-z

Keywords

Navigation