Weak Solutions for Compressible Navier–Stokes–Fourier System in Two Space Dimensions with Adiabatic Exponent Almost One

Abstract

We study the evolutionary compressible Navier–Stokes–Fourier system in a bounded two-dimensional domain with the pressure law \(p(\varrho ,\theta ) \sim \varrho \theta + \varrho \log ^{\alpha }(1+ \varrho )+ \theta ^{4}\). We consider the weak solutions with entropy inequality and total energy balance. We show the existence of this type of weak solutions without any restriction on the size of the initial conditions or the right-hand sides provided \(\alpha > \frac{17+\sqrt{417}}{16}\cong 2.34\).

This is a preview of subscription content, access via your institution.

Data availability

This point is not applicable in our situation.

Code availability

This point is not applicable in our situation.

References

  1. 1.

    Dain, S.: Generalized Korn’s inequality and conformal Killing vectors. Calc. Var. 25, 535–540 (2006)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Erban, R.: On the existence of solutions to the Navier–Stokes equations of a two-dimensional compressible flow. Math. Methods Appl. Sci. 26, 489–517 (2003)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. Am. Math. Soc., Providence (1990)

    Google Scholar 

  4. 4.

    Feireisl, E.: On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carol. 42, 83–98 (2001)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    Google Scholar 

  6. 6.

    Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics, 2nd edn. Birkhäuser, Basel (2017)

    Google Scholar 

  7. 7.

    Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech. 3, 358–392 (2001)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Feireisl, E., Gwiazda, P., S̀wierczewska-Gwiazda, A., Wiedemann, E.: Dissipative measure-valued solutions to the compressible Navier–Stokes system. Calc. Var. Partial Differ. Equ. 55, 141 (2016)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Frehse, J., Steinhauer, M., Weigant, W.: The Dirichlet problem for viscous compressible isothermal Navier–Stokes equations in two dimensions. Arch. Ration. Mech. Anal. 198, 1–12 (2010)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Krasnosel’skii, M.A., Rutitskii, Ya.B.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen (1961)

    Google Scholar 

  11. 11.

    Lions, P.L.: Mathematical Topics in Fluid Dynamics, Vol. 2: Compressible Models. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  12. 12.

    Maligranda, L.: Orlicz Spaces and Interpolation. Seminários de Matemática, vol. 5 (1989)

    Google Scholar 

  13. 13.

    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Mucha, P.B., Pokorný, M.: On the steady compressible Navier–Stokes–Fourier system. Commun. Math. Phys. 288, 349–377 (2009)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Mucha, P.B., Pokorný, M., Zatorska, E.: Existence of stationary weak solutions for the heat conducting flows. In: Giga, Y., Novotný, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 2595–2662. Springer, Berlin (2018)

    Google Scholar 

  16. 16.

    Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer Monographs in Mathematics. Springer, Berlin (2012). (Translated from the 1967 French original)

    Google Scholar 

  17. 17.

    Novotný, A., Pokorný, M.: Weak solutions for steady compressible Navier–Stokes–Fourier system in two space dimensions. Appl. Math. 56, 137–160 (2011)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Padula, M.: Existence of global solutions for 2-dimensional viscous compressible flows. J. Funct. Anal. 69, 1–20 (1986)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Padula, M.: Erratum: “Existence of global solutions for 2-dimensional viscous compressible flows” [J. Funct. Anal. 69 (1986), no. 1, 1–20]. J. Funct. Anal. 77, 232 (1988)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Pick, L., Kufner, A., John, O., Fučík, S.: Function Spaces, 2nd edn. De Gruyter Series in Nonlinear Analysis and Applications (2013)

    Google Scholar 

  21. 21.

    Plotnikov, P.I., Weigant, W.: Isothermal Navier-Stokes equations and Radon transform. SIAM J. Math. Anal. 47, 626–653 (2015)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Pokorný, M.: On the steady solutions to a model of compressible heat conducting fluid in two space dimensions. J. Partial Differ. Equ. 24, 334–350 (2011)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. M. Dekker, New York (1991)

    Google Scholar 

  24. 24.

    Stefanov, A., Torres, R.H.: Calderón–Zygmund operators on mixed Lebesgue spaces and applications to null forms. J. Lond. Math. Soc. 70, 447–462 (2004)

    Article  Google Scholar 

  25. 25.

    Stein, E.M.: Singular Integrals and Differential Properties of Functions. Princeton University Press, Princeton (1970)

    Google Scholar 

  26. 26.

    Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Both authors were supported by the Czech Science Foundation, Grant No. 19-04243S. Moreover, the second author was partially supported by the institutional support, grant SVV-2020-260583.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Milan Pokorný.

Ethics declarations

Conflicts of interest

The author declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both authors were supported by the Czech Science Foundation, Grant No. 19-04243S. Moreover, the second author was partially supported by the institutional support, grant SVV-2020-260583.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pokorný, M., Skříšovský, E. Weak Solutions for Compressible Navier–Stokes–Fourier System in Two Space Dimensions with Adiabatic Exponent Almost One. Acta Appl Math 172, 1 (2021). https://doi.org/10.1007/s10440-021-00394-6

Download citation

Mathematics Subject Classification

  • 76N10
  • 35Q30

Keywords

  • Compressible Navier–Stokes–Fourier equations
  • Orlicz spaces
  • Renormalized solution
  • Compensated compactness