Skip to main content
Log in

Enhanced Symmetry Analysis of Two-Dimensional Burgers System

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We carry out enhanced symmetry analysis of a two-dimensional Burgers system. The complete point symmetry group of this system is found using an enhanced version of the algebraic method. Lie reductions of the Burgers system are comprehensively studied in the optimal way and new Lie invariant solutions are constructed. We prove that this system admits no local conservation laws and then study hidden conservation laws, including potential ones. Various kinds of hidden symmetries (continuous, discrete and potential ones) are considered for this system as well. We exhaustively describe the solution subsets of the Burgers system that are its common solutions with its inviscid counterpart and with the two-dimensional Navier–Stokes equations. Using the method of differential constraints, which is particularly efficient for the Burgers system, we construct a number of wide families of solutions of this system that are expressed in terms of solutions of the (\(1+1\))-dimensional linear heat equation although they are not related to the well-known linearizable solution subset of the Burgers system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulwanhhab, M.A.: Exact solutions and conservation laws of system of two-dimensional viscous Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 39, 283–299 (2016)

    Article  MathSciNet  Google Scholar 

  2. Abraham-Shrauner, B., Govinder, K.S.: Master partial differential equations for a type II hidden symmetry. J. Math. Anal. Appl. 343, 525–530 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ames, W.F.: Nonlinear Partial Differential Equations in Engineering. Academic Press, New York (1965)

    MATH  Google Scholar 

  4. Barannik, L.F., Fushchich, W.I.: Continuous subgroups of the generalized Schrödinger groups. J. Math. Phys. 30, 280–290 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barannyk, L.: On the classification of subalgebras of the Galilei algebras. J. Nonlinear Math. Phys. 2, 263–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barannyk, T.: Symmetry and exact solutions for systems of nonlinear reaction–diffusion equations. In: Proceedings of Fourth International Conference “Symmetry in Nonlinear Mathematical Physics”, 9–15 July 2001, Kyiv. Proceedings of Institute of Mathematics, vol. 43, Part 1, pp. 184–193 (2002).

    Google Scholar 

  7. Bihlo, A., Dos Santos Cardoso-Bihlo, E.M., Popovych, R.O.: Algebraic method for finding equivalence groups. J. Phys. Conf. Ser. 621, 012001 (2015). arXiv:1503.06487

    Article  Google Scholar 

  8. Bihlo, A., Popovych, R.O.: Group classification of linear evolution equations. J. Math. Anal. Appl. 448, 982–1005 (2017). arXiv:1605.09251

    Article  MathSciNet  MATH  Google Scholar 

  9. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  10. Bocharov, A.V., Chetverikov, V.N., Duzhin, S.V., Khor’kova, N.G., Krasil’shchik, I.S., Samokhin, A.V., Torkhov, Y.N., Verbovetsky, A.M., Vinogradov, A.M.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Am. Math. Soc., Providence (1999)

    Book  MATH  Google Scholar 

  11. Broadbridge, P.: Classical and quantum Burgers fluids: a challenge for group analysis. Symmetry 7, 1803–1815 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carminati, J., Vu, K.: Symbolic computation and differential equations: Lie symmetries. J. Symb. Comput. 29, 95–116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cole, J.D.: On a quasi-linear parabolic equation occuring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951)

    Article  MATH  Google Scholar 

  14. Demetriou, E., Ivanova, N.M., Sophocleous, C.: Group analysis of \((2+1)\)- and \((3+1)\)-dimensional diffusion-convection equations. J. Math. Anal. Appl. 348, 55–65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dos Santos Cardoso-Bihlo, E.M., Popovych, R.O.: Complete point symmetry group of the barotropic vorticity equation on a rotating sphere. J. Eng. Math. 82, 31–38 (2013). arXiv:1206.6919

    Article  MathSciNet  MATH  Google Scholar 

  16. Edwards, M.P., Broadbridge, P.: Exceptional symmetry reductions of Burgers’ equation in two and three spatial dimensions. Z. Angew. Math. Phys. 46, 595–622 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. El-Sayed, M.F., Moatimid, G.M., Moussa, M.H.M., El-Shiekh, R.M., El-Satar, A.A.: Symmetry group analysis and similarity solutions for the (\(2+1\))-dimensional coupled Burger’s system. Math. Methods Appl. Sci. 37, 1113–1120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Foltinek, K.: Conservation laws of evolution equations: generic non-existence. J. Math. Anal. Appl. 235, 356–379 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Forsyth, A.R.: Theory of Differential Equations, vol. 6. Cambridge University Press, Cambridge (1906)

    MATH  Google Scholar 

  20. Fushchich, V.I., Barannik, L.F., Barannik, A.F.: Subgroup Analysis of Galilei and Poincare Groups and the Reduction of Nonlinear Equations. Naukova Dumka, Kyiv (1991), 301 pp. (Russian)

    MATH  Google Scholar 

  21. Fushchych, W.I., Popovych, R.O.: Symmetry reduction and exact solutions of the Navier–Stokes equations. I. J. Nonlinear Math. Phys. 1, 75–113 (1994). arXiv:math-ph/0207016

    Article  MathSciNet  MATH  Google Scholar 

  22. Fushchych, W.I., Popovych, R.O.: Symmetry reduction and exact solutions of the Navier–Stokes equations. II. J. Nonlinear Math. Phys. 1, 158–188 (1994). arXiv:math-ph/0207016

    Article  MathSciNet  MATH  Google Scholar 

  23. Hlavatý, L., Steinberg, S., Wolf, K.B.: Linear and nonlinear differential equations as invariants on coset bundles. In: Nonlinear Phenomena, Oaxtepec, 1982. Lecture Notes in Phys., vol. 189, pp. 439–451. Springer, Berlin (1983)

    Chapter  Google Scholar 

  24. Hopf, E.: The partial differential equation \(u_{t}+uu_{x}=\mu u_{xx}\). Commun. Pure Appl. Math. 3, 201–230 (1950)

    Article  MATH  Google Scholar 

  25. Hydon, P.E.: How to construct the discrete symmetries of partial differential equations. Eur. J. Appl. Math. 11, 515–527 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ibragimov, N.H.: Transformation Groups Applied to Mathematical Physics. Reidel, Dordrecht (1985)

    Book  MATH  Google Scholar 

  27. Igonin, S.: Conservation laws for multidimensional systems and related linear algebra problems. J. Phys. A, Math. Gen. 35, 10607–10617 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kingston, J.G., Sophocleous, C.: On form-preserving point transformations of partial differential equations. J. Phys. A, Math. Gen. 31, 1597–1619 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kapitanskii, L.V.: Group analysis of the Navier–Stokes and Euler equations in the presence of rotation symmetry and new exact solutions to these equations. Dokl. Akad. Nauk SSSR 243, 901–904 (1978)

    MathSciNet  Google Scholar 

  30. Kurujyibwami, C., Basarab-Horwath, P., Popovych, R.O.: Algebraic method for group classification of (\(1+1\))-dimensional linear Schrödinger equations. Acta Appl. Math. 157, 171–203 (2018). arXiv:1607.04118

    Article  MathSciNet  MATH  Google Scholar 

  31. Martínez-Alonso, L.: On the Noether map. Lett. Math. Phys. 3, 419–424 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Graduate Texts in Mathematics, vol. 107. Springer, New York (1993)

    Book  MATH  Google Scholar 

  33. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  34. Patera, J., Winternitz, P.: Subalgebras of real three and four-dimensional Lie algebras. J. Math. Phys. 18, 1449–1455 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pocheketa, O.A., Popovych, R.O.: Reduction operators of Burgers equation. J. Math. Anal. Appl. 398, 270–277 (2013). arXiv:1208.0232

    Article  MathSciNet  MATH  Google Scholar 

  36. Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations, 2nd edn. Chapman & Hall/CRC, Boca Raton (2012)

    MATH  Google Scholar 

  37. Popovych, R.O.: On Lie reduction of the Navier–Stokes equations. J. Nonlinear Math. Phys. 2, 301–311 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Popovych, R.O., Ivanova, N.M.: Hierarchy of conservation laws of diffusion-convection equations. J. Math. Phys. 46, 043502 (2005). arXiv:math-ph/0407008

    Article  MathSciNet  MATH  Google Scholar 

  39. Popovych, R.O., Kunzinger, M., Ivanova, N.M.: Conservation laws and potential symmetries of linear parabolic equations. Acta Appl. Math. 100, 113–185 (2008). arXiv:0706.0443

    Article  MathSciNet  MATH  Google Scholar 

  40. Rajaee, L., Eshraghi, H., Popovych, R.O.: Multi-dimensional quasi-simple waves in weakly dissipative flows. Physica D 237, 405–419 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sachdev, P.L.: Nonlinear Diffusive Waves. Cambridge University Press, New York (1987)

    Book  MATH  Google Scholar 

  42. Salerno, M.: On the phase manifold geometry of the two-dimensional Burgers equation. Phys. Lett. A 121, 15–18 (1987)

    Article  MathSciNet  Google Scholar 

  43. Tamizhmani, K.M., Punithavathi, P.: Similarity reductions and Painlevé property of the coupled higher-dimensional Burgers’ equation. Int. J. Non-Linear Mech. 26, 427–438 (1991)

    Article  MATH  Google Scholar 

  44. Vinogradov, A.M.: Local symmetries and conservation laws. Acta Appl. Math. 2, 21–78 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vu, K.T., Butcher, J., Carminati, J.: Similarity solutions of partial differential equations using DESOLV. Comput. Phys. Commun. 176, 682–693 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

R.O. Popovych and C. Sophocleous would like to express their gratitude for the reciprocal hospitality shown by their two institutions. The research of ROP was supported by the Austrian Science Fund (FWF), project P25064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos Sophocleous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kontogiorgis, S., Popovych, R.O. & Sophocleous, C. Enhanced Symmetry Analysis of Two-Dimensional Burgers System. Acta Appl Math 163, 91–128 (2019). https://doi.org/10.1007/s10440-018-0215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0215-9

Keywords

Navigation