Skip to main content
Log in

On Generalized Walsh Bases

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper continues the study of orthonormal bases (ONB) of \(L^{2}[0,1]\) introduced in Dutkay et al. (J. Math. Anal. Appl. 409(2):1128–1139, 2014) by means of Cuntz algebra \(\mathcal{O}_{N}\) representations on \(L^{2}[0,1]\). For \(N=2\), one obtains the classic Walsh system. We show that the ONB property holds precisely because the \(\mathcal{O}_{N}\) representations are irreducible. We prove an uncertainty principle related to these bases. As an application to discrete signal processing we find a fast generalized transform and compare this generalized transform with the classic one with respect to compression and sparse signal recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmed, N., Rao, K.R.: Walsh functions and Hadamard transforms. In: Proc. 1972 Walsh Functions Symposium. National Technical Information Service, Springfield, VA 22151, (1972). Order no. AD-744650:8-13

    Google Scholar 

  2. Ahmed, N., Rao, K.R.: Orthogonal Transforms for Digital Signal Processing. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  3. Bratteli, O., Jorgensen, P.E.T.: Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale \(N\). Integral Equ. Oper. Theory 28(4), 382–443 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bratteli, O., Jorgensen, P.E.T., Kishimoto, A., Werner, R.F.: Pure states on \(\mathcal{O}_{d}\). J. Oper. Theory 43(1), 97–143 (2000)

    Google Scholar 

  5. Chrestenson, H.E.: A class of generalized Walsh functions. Pac. J. Math. 5, 17–31 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corrington, M.S.: Advanced analytical and signal processing techniques. ASTIA Document No. AD 277-942 (1962)

  7. Dutkay, D.E., Haussermann, J., Jorgensen, P.E.T.: Atomic representations of Cuntz algebras. J. Math. Anal. Appl. 421(1), 215–243 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dick, J., Kuo, F.Y., Pillichshammer, F., Sloan, I.H.: Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comput. 74(252), 1895–1921 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dick, J., Pillichshammer, F.: Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complex. 21(2), 149–195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dutkay, D.E., Picioroaga, G.: Generalized Walsh bases and applications. Acta Appl. Math. 133, 1–18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dutkay, D.E., Picioroaga, G., Song, M.-S.: Orthonormal bases generated by Cuntz algebras. J. Math. Anal. Appl. 409(2), 1128–1139 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harmuth, H.: Transmission of Information by Orthogonal Functions, 2nd edn. Springer, New York (1972)

    Book  MATH  Google Scholar 

  14. Harding, S.N.: Generalized Walsh transforms, Cuntz algebras representations and applications in signal processing. University of South Dakota, Master Thesis (2015). Copyright—Database copyright ProQuest LLC

  15. Kawamura, K.: Generalized permutative representation of Cuntz algebra. I. Generalization of cycle type. Surikaisekikenkyusho Kokyuroku 1300, 1–23 (2003). The structure of operator algebras and its applications (Japanese) (Kyoto, 2002)

    MathSciNet  Google Scholar 

  16. Kawamura, K.: Universal fermionization of bosons on permutative representations of the Cuntz algebra \({\mathcal{O}} _{2}\). J. Math. Phys. 50(5), 053521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawamura, K., Hayashi, Y., Lascu, D.: Continued fraction expansions and permutative representations of the Cuntz algebra \({\mathcal{O}}_{\infty }\). J. Number Theory 129(12), 3069–3080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, M.H., Kaveh, M.: Fast Hadamard transform based on a simple matrix factorization. In: IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 34 (1986)

    Google Scholar 

  19. Nagy, B.S.: Introduction to Real Functions and Orthogonal Expansions. Oxford University Press, New York (1965)

    MATH  Google Scholar 

  20. Paley, R.E.A.C.: A Remarkable Series of Orthogonal Functions (I). Proc. Lond. Math. Soc. 34(4), 241–264 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  21. Picioroaga, G., Weber, E.S.: Fourier frames for the Cantor-4 set. J. Fourier Anal. Appl. 23(2), 324–343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tao, T.: An uncertainty principle for cyclic groups of prime order. Math. Res. Lett. 12(1), 121–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vilenkin, N.: On a class of complete orthonormal systems. Bull. Acad. Sci. URSS. Sér. Math. [Izv. Akad. Nauk SSSR] 11, 363–400 (1947)

    MathSciNet  MATH  Google Scholar 

  24. Walsh, J.L.: A Closed Set of Normal Orthogonal Functions. Am. J. Math. 45(1), 5–24 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuen, C.: Walsh functions and Gray code. In: Proc. 1972 Walsh Functions Symposium. National Technical Information Service, VA 22151, (1972). Order no. AD-707431:68-73

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by a grant from the Simons Foundation (#228539 to Dorin Dutkay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Picioroaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutkay, D.E., Picioroaga, G. & Silvestrov, S. On Generalized Walsh Bases. Acta Appl Math 163, 73–90 (2019). https://doi.org/10.1007/s10440-018-0214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0214-x

Keywords

Navigation