# Fractional-Order Legendre Functions and Their Application to Solve Fractional Optimal Control of Systems Described by Integro-differential Equations

• Kobra Rabiei
• Esmaeil Babolian
Article

## Abstract

In this paper, we introduce a set of functions called fractional-order Legendre functions (FLFs) to obtain the numerical solution of optimal control problems subject to the linear and nonlinear fractional integro-differential equations. We consider the properties of these functions to construct the operational matrix of the fractional integration. Also, we achieved a general formulation for operational matrix of multiplication of these functions to solve the nonlinear problems for the first time. Then by using these matrices the mentioned fractional optimal control problem is reduced to a system of algebraic equations. In fact the functions of the problem are approximated by fractional-order Legendre functions with unknown coefficients in the constraint equations, performance index and conditions. Thus, a fractional optimal control problem converts to an optimization problem, which can then be solved numerically. The convergence of the method is discussed and finally, some numerical examples are presented to show the efficiency and accuracy of the method.

## Keywords

Fractional-order Legendre functions Optimal control problem Fractional integro-differential equations Operational matrix Convergence analysis

## Notes

### Acknowledgements

We would like to thank the referees for their helpful suggestions to improve the earlier version of this article.

## References

1. 1.
Kosmol, P., Pavon, M.: Lagrange approach to the optimal control of diffusions. Acta Appl. Math. 32, 101–122 (1993)
2. 2.
Ho, T.S., Rabitz, H., Turinici, T.: Critical points of the optimal quantum control landscape: a propagator approach. Acta Appl. Math. 118, 49–56 (2012)
3. 3.
Jia, W., He, X., Guo, L.: The optimal homotopy analysis method for solving linear optimal control problems. Appl. Math. Model. 45, 865–880 (2017)
4. 4.
Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263–282 (2008)
5. 5.
Suarez, I.J., Vinagre, B.M., Chen, Y.Q.: A fractional adaptation scheme for lateral control of an AGV. J. Vib. Control 14, 1499–1511 (2008)
6. 6.
Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)
7. 7.
Agrawal, O.P.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problem. J. Vib. Control 13, 1269–1281 (2007)
8. 8.
Agrawal, O.P.: A formulation and numerical scheme for fractional optimal control problems. J. Vib. Control 14, 1291–1299 (2008)
9. 9.
Kamocki, R., Majewski, M.: On the existence and continuous dependence on parameter of solutions to some fractional Dirichlet problem with application to Lagrange optimal control problem. J. Optim. Theory Appl. (2016).
10. 10.
Agrawal, O.P.: Fractional optimal control of a distributed system using eigenfunctions, ASME. J. Comput. Nonlinear Dyn. 3(2), 021204 (2008).
11. 11.
Tricaud, C.H., Chen, Y.: An approximate method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl. 59(5), 1644–1655 (2010)
12. 12.
Ozdemir, N., Agrawal, O.P., Iskender, B.B., Karadeniz, B.: Fractional optimal control of a 2-dimensional distributed system using eigenfunctions. Nonlinear Dyn. 55(3), 251–260 (2009)
13. 13.
Povstenko, Y.: Time-fractional radial diffusion in sphere. Nonlinear Dyn. 53(1), 55–65 (2008)
14. 14.
Lotfi, A., Yousefi, S.A., Dehghan, M.: Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule. J. Comput. Appl. Math. 250, 143–160 (2013)
15. 15.
Keshavarz, E., Ordokhani, O., Razzaghi, M.: A numerical solution for fractional optimal control problems via Bernoulli polynomials. J. Vib. Control 22(18), 3889–3903 (2016)
16. 16.
Almeida, R., Torres, D.F.M.: A discrete method to solve fractional optimal control problems. Nonlinear Dyn. 80(4), 1811–1816 (2015)
17. 17.
Sweilam, N.H., Alajmi, T.M.: Legendre spectral collocation method for solving some type of fractional optimal control problem. J. Adv. Res. 6, 393–403 (2015)
18. 18.
Rabiei, K., Ordokhani, Y., Babolian, E.: The Boubaker polynomials and their application to solve fractional optimal control problems. Nonlinear Dyn. (2016).
19. 19.
Elnagar, G.: Optimal control computation integro-differential aerodynamic equations. Math. Methods Appl. Sci. 21, 653–664 (1998)
20. 20.
Mashayekhi, S., Ordokhani, Y., Razzaghi, M.: Hybrid functions approach for optimal control of systems described by integro-differential equations. Appl. Math. Model. 37, 3355–3368 (2013)
21. 21.
El-Kady, M., Moussa, H.: Monic Chebyshev approximations for solving optimal control problem with Volterra integro-differential equations. Gen. Math. Notes 14, 23–36 (2013)
22. 22.
Maleknejad, K., Ebrahimzadeh, A.: Optimal control of Volterra integro-differential systems based on Legendre wavelets and collocation method. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 8(7), 1040–1044 (2014) Google Scholar
23. 23.
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
24. 24.
Kazem, S., Abbasbandy, S., Kumar, S.: Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37(7), 5498–5510 (2013)
25. 25.
Benson, D.A.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resour. 51, 479–497 (2013)
26. 26.
Larsson, S., Racheva, M., Saedpanah, F.: Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. Comput. Methods Appl. Mech. Eng. 283, 196–209 (2015)
27. 27.
Shen, T., Huang, J.: Well-posedness and dynamics of stochastic fractional model for nonlinear optical fiber materials. Nonlinear Anal., Theory Methods Appl. 110, 33–46 (2014)
28. 28.
Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14, 1487–1498 (2008)
29. 29.
Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal., Real World Appl. 26, 289–305 (2015)
30. 30.
Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50(1), 15–67 (1997)
31. 31.
Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32, 1–104 (2004)
32. 32.
Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)
33. 33.
Lancaster, P.: Theory of Matrices. Academic Press, New York (1969)

• Kobra Rabiei
• 1