Skip to main content
Log in

Asymptotics and Lower Bound for the Lifespan of Solutions to the Primitive Equations

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In a previous work we obtained a large lower bound for the lifespan of the solutions to the Primitive Equations, and proved convergence to the 3D quasi-geostrophic system for general and ill-prepared blowing-up data, when the kinematic viscosity \(\nu \) is equal to the heat diffusivity \(\nu '\), turning the diffusion operator \(\varGamma \) into the classical Laplacian.

Obtaining the same results in the general case is much more difficult as it involves a homogeneous non-local non-radial diffusion operator \(\varGamma \) whose semi-group and singular integral form kernels present sign changes. Every classical result related to non-local operators, or to Navier-Stokes system then becomes more involved here and the key ingredient will be new transport-diffusion estimates obtained in a companion paper and a precise use of the quasi-geostrophic decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A., Mahalov, A., Nicolaenko, B.: Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. Eur. J. Mech. B, Fluids 15, 291–300 (1996)

    MATH  Google Scholar 

  2. Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48, 1133–1176 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Babin, A., Mahalov, A., Nicolaenko, B.: Strongly stratified limit of 3D primitive equations in an infinite layer. In: Advances in Wave Interaction and Turbulence, South Hadley, MA, 2000. Contemp. Math., vol. 283. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

  4. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

    MATH  Google Scholar 

  5. Beale, T., Bourgeois, A.: Validity of the quasi-geostrophic model for large scale flow in the atmosphere and ocean. SIAM J. Math. Anal. 25, 1023–1068 (1994)

    Article  MathSciNet  Google Scholar 

  6. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Éc. Norm. Supér. 14, 209–246 (1981)

    Article  Google Scholar 

  7. Bougeault, P., Sadourny, R.: Dynamique de l’Atmosphère et de l’Océan. Editions de l’Ecole Polytechnique, Paris (2001)

    Google Scholar 

  8. Charve, F.: Global well-posedness and asymptotics for a geophysical fluid system. Commun. Partial Differ. Equ. 29 (11 & 12), 1919–1940 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Charve, F.: Convergence of weak solutions for the primitive system of the quasigeostrophic equations. Asymptot. Anal. 42, 173–209 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Charve, F.: Asymptotics and vortex patches for the quasigeostrophic approximation. J. Math. Pures Appl. 85, 493–539 (2006)

    Article  MathSciNet  Google Scholar 

  11. Charve, F.: Global well-posedness for the primitive equations with less regular initial data. Ann. Fac. Sci. Toulouse 17(2), 221–238 (2008)

    Article  MathSciNet  Google Scholar 

  12. Charve, F., Ngo, V-S.: Asymptotics for the primitive equations with small anisotropic viscosity. Rev. Mat. Iberoam. 27(1), 1–38 (2011)

    Article  MathSciNet  Google Scholar 

  13. Charve, F., Danchin, R.: A global existence result for the compressible Navier-Stokes equations in the critical Lp framework. Arch. Ration. Mech. Anal. 198(1), 233–271 (2010)

    Article  MathSciNet  Google Scholar 

  14. Charve, F., Haspot, B.: On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model. J. Funct. Anal. 265(7), 1264–1323 (2013)

    Article  MathSciNet  Google Scholar 

  15. Charve, F.: Convergence of a low order non-local Navier-Stokes-Korteweg system: the order-parameter model. Asymptot. Anal. 100(3–4), 153–191 (2016)

    Article  MathSciNet  Google Scholar 

  16. Charve, F.: A priori estimates for the 3D quasi-geostrophic system. J. Math. Anal. Appl. 444(2), 911–946 (2016)

    Article  MathSciNet  Google Scholar 

  17. Chemin, J.-Y.: Fluides parfaits incompressibles. Astérisque 230 (1995)

  18. Chemin, J.-Y.: A propos d’un problème de pénalisation de type antisymétrique. J. Math. Pures Appl. 76, 739–755 (1997)

    Article  MathSciNet  Google Scholar 

  19. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Anisotropy and dispersion in rotating fluids. In: Nonlinear Partial Differential Equations and Their Application, Collège de France Seminar. Studies in Mathematics and its Applications, vol. 31, pp. 171–191 (2002)

    MATH  Google Scholar 

  20. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Fluids with anisotropic viscosity, Special issue for R. Temam’s 60th birthday. Modél. Math. Anal. Numér. 34(2), 315–335 (2000)

    Article  MathSciNet  Google Scholar 

  21. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Ekman boundary layers in rotating fluids. ESAIM Control Optim. Calc. Var. 8, 441–466 (2002). A tribute to J.-L. Lions

    Article  MathSciNet  Google Scholar 

  22. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics: An Introduction to Rotating Fluids and to the Navier-Stokes Equations. Oxford University Press, London (2006)

    MATH  Google Scholar 

  23. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 511–528 (2004)

    Article  MathSciNet  Google Scholar 

  24. Cushman-Roisin, B.: Introduction to Geophysical Fluid Dynamics. Prentice Hall, New York (1994)

    MATH  Google Scholar 

  25. Danchin, R.: Poches de tourbillon visqueuses. J. Math. Pures Appl. 76(7), 609–647 (1997)

    Article  MathSciNet  Google Scholar 

  26. Desjardins, B., Grenier, E.: Derivation of the quasigeostrophic potential vorticity equations. Adv. Differ. Equ. 3(5), 715–752 (1998)

    MATH  Google Scholar 

  27. Dutrifoy, A., Hmidi, T.: The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data. Commun. Pure Appl. Math. 57(9), 1159–1177 (2004)

    Article  MathSciNet  Google Scholar 

  28. Dutrifoy, A.: Slow convergence to vortex patches in quasigeostrophic balance. Arch. Ration. Mech. Anal. 171(3), 417–449 (2004)

    Article  MathSciNet  Google Scholar 

  29. Dutrifoy, A.: Examples of dispersive effects in non-viscous rotating fluids. J. Math. Pures Appl. 84(3), 331–356 (2005)

    Article  MathSciNet  Google Scholar 

  30. Embid, P., Majda, A.: Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity. Commun. Partial Differ. Equ. 21, 619–658 (1996)

    Article  MathSciNet  Google Scholar 

  31. Embid, P., Majda, A.: Averaging over fast gravity waves for geophysical flows with unbalanced initial data. Theor. Comput. Fluid Dyn. 11, 155–169 (1998)

    Article  Google Scholar 

  32. Gallagher, I.: Applications of Schochet’s methods to parabolic equation. J. Math. Pures Appl. 77, 989–1054 (1998)

    Article  MathSciNet  Google Scholar 

  33. Gamblin, P., Saint Raymond, X.: On three dimensional vortex patches. Bull. Soc. Math. Fr. 123(3), 375–424 (1995)

    Article  MathSciNet  Google Scholar 

  34. Greenspan, H.P.: The Theory of Rotating Fluids. Cambridge University Press, Cambridge (1968)

    MATH  Google Scholar 

  35. Hmidi, T.: Régularité hölderienne des poches de tourbillon visqueuses. J. Math. Pures Appl. 84(11), 1455–1495 (2005)

    Article  MathSciNet  Google Scholar 

  36. Hmidi, T., Keraani, S.: On the global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces. Adv. Math. 214(2), 618–638 (2007)

    Article  MathSciNet  Google Scholar 

  37. Hmidi, T., Abidi, H.: On the global well-posedness of the critical quasi-geostrophic equation. SIAM J. Math. Anal. 40(1), 167–185 (2008)

    Article  MathSciNet  Google Scholar 

  38. Hmidi, T., Zerguine, M.: On the global well-posedness of the Euler-Boussinesq system with fractional dissipation. Physica D 239(15), 1387–1401 (2010)

    Article  MathSciNet  Google Scholar 

  39. Iftimie, D.: The resolution of the Navier-Stokes equations in anisotropic spaces. Rev. Mat. Iberoam. 15, 1–36 (1999)

    Article  MathSciNet  Google Scholar 

  40. Iftimie, D.: The approximation of the quasigeostrophic system with the primitive systems. Asymptot. Anal. 21(2), 89–97 (1999)

    MathSciNet  MATH  Google Scholar 

  41. Konieczny, P., Yoneda, T.: On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations. J. Differ. Equ. 250, 3859–3873 (2011)

    Article  MathSciNet  Google Scholar 

  42. Lions, J.-L., Temam, R., Wang, S.: New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5, 237–288 (1992)

    Article  MathSciNet  Google Scholar 

  43. Lions, J.-L., Temam, R., Wang, S.: Geostrophic asymptotics of the primitive equations of the atmosphere. Topol. Methods Nonlinear Anal. 4, 1–35 (1994)

    Article  MathSciNet  Google Scholar 

  44. Ngo, V.-S.: Rotating fluids with small viscosity. Int. Math. Res. Not. 2009(10), 1860–1890 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Paicu, M.: Étude asymptotique pour les fluides anisotropes en rotation rapide dans le cas périodique. J. Math. Pures Appl. 83(2), 163–242 (2004)

    Article  MathSciNet  Google Scholar 

  46. Paicu, M.: Équation périodique de Navier-Stokes sans viscosité dans une direction. Commun. Partial Differ. Equ. 30(7–9), 1107–1140 (2005)

    Article  Google Scholar 

  47. Paicu, M.: Équation anisotrope de Navier-Stokes dans des espaces critiques. Rev. Mat. Iberoam. 21(1), 179–235 (2005)

    Article  Google Scholar 

  48. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Berlin (1979)

    Book  Google Scholar 

Download references

Acknowledgements

The author wishes to thank R. Danchin, I. Gallagher, and T. Hmidi for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Charve.

Appendix

Appendix

The first part is devoted to a quick presentation of the Littlewood-Paley theory. In the second section we briefly recall general definitions for vortex patches and the last section provides new properties for the operator \(\varGamma \) and recalls the a priori estimates from [16].

1.1 A.1 Littlewood-Paley Theory

In this section, \(C^{s}\) is the usual Hölder space, which can also be defined through the Littlewood-Paley theory if \(s\notin \mathbb{N}\) (we refer to [4, 17] for a complete presentation of the theory):

$$ C^{s}=\Bigl\{ u \in {\mathcal{S}}'\bigl( \mathbb{R}^{3}\bigr), \quad \|u\|_{C^{s}} \mathop{=}^{\mathrm{def}} \sup_{q \geq -1} 2^{qs} \|\Delta _{q} u \|_{L ^{\infty }} < \infty \Bigr\} , $$

where \(\Delta _{q}\) is the classical dyadic frequency localization operator defined as follows: consider a smooth radial function \(\chi \) supported in the ball \(B(0, \frac{4}{3})\), equal to 1 in a neighborhood of \(B(0, \frac{3}{4})\) and such that \(r\mapsto \chi (r.e _{1})\) is nonincreasing over \(\mathbb{R}_{+}\). If we define \(\varphi (\xi )=\chi (\frac{\xi }{2})-\chi (\xi )\), \(\varphi \) is supported respectively in the annulus \({\mathcal{C}}(0,\frac{3}{4}, \frac{8}{3})\) (equal to 1 in a sub-annulus), and satisfy that for all \(\xi \in \mathbb{R}^{3}\),

$$ \chi (\xi )+ \sum_{q\geq 0} \varphi \bigl(2^{-q} \xi \bigr)=1 \quad \mbox{and if}\quad \xi \neq 0, \quad \sum _{q\in \mathbb{Z}} \varphi \bigl(2^{-q} \xi \bigr)=1. $$

Then for all tempered distribution we define:

  • \(\Delta _{-1}= \mathcal{F}^{-1} (\chi (\xi ) \widehat{u}(\xi ))\) and \(\forall q\leq -2\), \(\Delta _{q}=0\),

  • \(\forall q\geq 0\), \(\Delta _{q} =\mathcal{F}^{-1} (\varphi (2^{-q}\xi ) \widehat{u}(\xi ) )\) and \(S_{q} u =\sum_{p< q-1} \Delta _{p} u= \chi (2^{-q}D) u\),

  • \(\forall q \in \mathbb{Z}\), \(\dot{\Delta }_{q} =\mathcal{F}^{-1}(\varphi (2^{-q}\xi ) \widehat{u}(\xi ))\) and \({\dot{S}_{q} u =\sum_{p< q-1} \dot{\Delta }_{p} u= \chi (2^{-q}D) u}\).

Hölder spaces are particular cases of inhomogeneous Besov spaces: \(C^{s}=B_{\infty , \infty }^{s}\), where

$$ B_{p,r}^{s}=\bigl\{ u \in {\mathcal{S}}'\bigl( \mathbb{R}^{3}\bigr), \ \|u\|_{B_{p,r}^{s}} \mathop{=}^{\mathrm{def}} \bigl\| \bigl(2^{qs} \|\Delta _{q} u\| _{L^{p}} \bigr)_{q \geq -1}\bigr\| _{\ell ^{r}} < \infty \bigr\} . $$

The homogeneous Besov spaces are defined as follows:

$$ \dot{B}_{p,r}^{s}=\bigl\{ u \in {\mathcal{S}}'\bigl(\mathbb{R}^{3}\bigr), \mbox{with } \mathop{\mbox{lim}}_{q\rightarrow -\infty }\dot{S}_{q} u=0 \mbox{ and } \|u\|_{\dot{B}_{p,r}^{s}} \mathop{=}^{\mathrm{def}} \bigl\| \bigl(2^{qs} \|\dot{\Delta }_{q}u\|_{L^{p}} \bigr)_{q \in \mathbb{Z}}\bigr\| _{\ell ^{r}} < \infty \bigr\} . $$

When the regularity index \(s\) is negative, another way to express the Besov norm involves the operator \(S_{q}\) instead of \(\Delta _{q}\) (for more details we refer to [4] Proposition 2.76 and to 2.31 for the homogeneous case):

Proposition 10

There exists a constant \(C>0\) such that for all \(s<0\), \(p,r\in [1,\infty ]\) and \(u\), then \(u\in B_{p,r}^{s}\) if and only if

$$ \bigl(2^{qs} \|S_{q} u\|_{L^{p}} \bigr)_{q \geq -1} \in \ell ^{r}. $$

Moreover, we have

$$ \bigl\| \bigl(2^{qs} \|S_{q} u\|_{L^{p}} \bigr)_{q}\bigr\| _{\ell ^{r}} \sim \|u\| _{B_{p,r}^{s}}. $$
(A.96)

Remark 18

Due to the supports, we easily obtain that

$$ \Delta _{j} \Delta _{l} =\dot{\Delta }_{j} \dot{\Delta }_{l} =0 \quad \mbox{if } |j-l|\geq 2. $$
(A.97)
  • For any functions \(f\), \(g\), and any \(\alpha \in \{-1,0,1\}\), the product \(\Delta _{q} f. \Delta _{q+\alpha } g\) has its frequencies in a ball of size \(2^{q}\).

  • For any functions \(f\), \(g\), the product \(S_{q-1} f. \Delta _{q} g\) has its frequencies in an annulus of size \(2^{q}\).

We will end this section with the Bony decomposition, which comes from the fact that for all distributions \(u\), \(v\), we can write the product as follows:

$$ uv=\biggl(\sum_{q\geq -1} \Delta _{q} u \biggr) \biggl(\sum_{l\geq -1} \Delta _{l} v \biggr). $$

In fact, a more efficient way to write this product is the following Bony decomposition, where we basically set three parts according to the fact that the frequency \(q\) of \(u\) is smaller, comparable or bigger than the frequency \(l\) of \(v\):

$$ uv= T_{u} v+ T_{v} u+ R(u, v), $$
(A.98)

where

  • \(T\) is the paraproduct: \(T_{u} v= \sum_{p\leq q-2} \Delta _{p} u \Delta _{q} v= \sum_{q} S_{q-1} u \Delta _{q} v\),

  • \(R\) is the remainder: \(R(u, v)= \sum_{|p-q| \leq 1} \Delta _{p} u \Delta _{q} v\).

A similar decomposition can be defined with the homogeneous Littlewood-Paley operators.

1.2 A.2 Vortex Patches

We refer to [17] for a full description of the persistence of the vortex patches structure in the case of the Euler system, to [25] and [35] for the case of the Navier-Stokes system, and to [28] for the case of the inviscid Primitive Equations (\(\nu =\nu '=0\)). In the present paper, we take here the same definitions of vortex patches and tangential regularity as in [28]: a potential vortex patch will be defined with respect to the scalar potential vorticity instead of the vorticity (rotational of the velocity). The potential vorticity is called a vortex patch if it is the characteristic function of a regular open set:

Definition 1

We say that \(\varOmega _{0}\) is a vortex patch of class \(C^{s}\) if, for some \(s\in ]0,1[\),

$$ \varOmega _{0}= \varOmega _{0, i} \textbf{1}_{D} +\varOmega _{0, e} \textbf{1} _{\mathbb{R}^{3}-D}, $$

where \(\varOmega _{0, i} \in C^{s}(\overline{D})\), \(\varOmega _{0, e} \in C ^{s}(\mathbb{R}^{3}-D)\) and \(D\) is an open bounded domain of class \(C^{s+1}\).

In our results we will use estimates involving the tangential regularity with respect to a set \(X\) of vectorfields:

Definition 2

If \(X=(X_{\lambda })_{\lambda =1,\ldots,N}\) is a finite family of vectorfields we will say that this family is admissible if and only if (× is the usual vector product in \(\mathbb{R}^{3}\)):

$$ [X]^{-1}\mathop{=}^{\mathrm{def}} \biggl(\frac{2}{N(N-1)} \sum _{\lambda < \lambda '} |X_{\lambda } \times X_{\lambda '}|^{2} \biggr)^{-\frac{1}{4}} < \infty . $$

If \(s\in ]0,1[\) and \(X\) is an admissible family of vectorfields \(C^{s}\) we define the space:

$$ C^{s}(X)=\bigl\{ w \in L^{\infty } \mbox{ such that} \ X_{\lambda }(x, D)w \mathop{=}^{\mathrm{def}} \mbox{div} (w \otimes X _{\lambda })\in C^{s-1} \bigr\} $$

and as corresponding norm we take:

$$ \|w\|_{C^{s}(X)}\mathop{=}^{\mathrm{def}}\|w\|_{L^{\infty }}+ \bigl\| [X]^{-1} \bigr\| _{L^{\infty }} +\sum_{\lambda =1}^{N} \bigl( \|X_{\lambda }\|_{C^{s}}+ \bigl\| X_{\lambda }(x, D)w\bigr\| _{C^{s-1}} \bigr). $$
(A.99)

Remark 19

We took here the same definition as in [28] for \(X_{\lambda }(x, D)w\) which is a slightly simplified formulation of the definitions from [17], or [35].

1.3 A.3 Definition and Additional Properties for the Non-local Operator \(\varGamma \)

1.3.1 A.3.1 Product Estimates

We refer to [16] for a study of operator \(\varGamma \) where we give various formulations. This operator is defined as

$$ \varGamma = \Delta \Delta _{F}^{-1} \bigl(\nu \partial _{1}^{2} +\nu \partial _{2}^{2}+ \nu ' F^{2} \partial _{3}^{2}\bigr). $$

First we decompose \(\varGamma \) into its local and non-local parts:

$$ \varGamma =\varGamma _{L}+\bigl(\nu -\nu '\bigr) F^{2}\bigl(1-F^{2}\bigr) \varLambda ^{2}, $$

where we denote:

$$ \textstyle\begin{cases} \varGamma _{L}= \nu \partial _{1}^{2} +\nu \partial _{2}^{2}+ ( (1-F ^{2})\nu +F^{2} \nu ' ) \partial _{3}^{2}, \\ \varLambda = \partial _{3}^{2} (-\Delta _{F})^{-\frac{1}{2}}. \end{cases} $$
(A.100)

We also refer to [16] for the following expressions of \(\varLambda \) as singular or convergent integrals, directly related to the alternative expression of homogeneous Besov norms involving finite differences:

$$\begin{aligned} \varLambda f (x) =& \lim_{\varepsilon \rightarrow 0}\int _{|y|\geq \varepsilon } K(y) \bigl(f(x-y)-f(x) \bigr) dy \\ =& \frac{1}{2}\int _{\mathbb{R}^{3}} K(y) \bigl(f(x-y)+f(x+y)-2f(x) \bigr) dy, \end{aligned}$$
(A.101)

where the kernel \(K\) is defined for all \(y\in \mathbb{R}^{3}\) by (\(C\) is a universal constant):

$$ K(y)= -\frac{2C}{F^{3}}\frac{y_{1}^{2}+ y_{2}^{2} -\frac{3}{F^{2}}y _{3}^{2}}{ (y_{1}^{2}+ y_{2}^{2} +\frac{1}{F^{2}}y_{3}^{2} )^{3}}. $$
(A.102)

The main feature of [16] was an estimate of the commutator of \(\varLambda \) with a lagrangian change of variable (crucial to obtain the a priori estimates), but we also obtained the following result that allows to consider commutators like \(\varGamma (fg)-f\varGamma g\):

Proposition 11

([16] Sect. 3.3.2)

For any smooth functions \(f\), \(g\) we can write:

$$ \varLambda (fg)= f\varLambda g +g\varLambda f +M(f,g), $$

where the bilinear operator \(M\) is defined for all \(x\in \mathbb{R} ^{3}\) by:

$$ M(f,g) (x) = \int _{\mathbb{R}^{3}} K(y) \bigl(f(x-y)-f(x) \bigr) \bigl(g(x-y)-g(x) \bigr) dy. $$
(A.103)

Moreover there exists a constant \(C_{F}\) such that for all \(f\), \(g\):

$$ \bigl\| M(f,g)\bigr\| _{L^{p}} \leq C_{F} \sqrt{\|f\|_{L^{p}} \| \nabla f\|_{L ^{p}} \|g\|_{L^{\infty }} \|\nabla g\|_{L^{\infty }}}. $$
(A.104)

In this article we will need more precise estimates where we can in particular, even if \(M(f,g)=M(g,f)\), make the derivatives pound differently on \(f\) or \(g\), which is the object of the following result:

Proposition 12

There exists a constant \(C_{F}\) such that for all \(f\), \(g\) and all \(p,p_{1}, P_{2},r,\overline{r}\in [1,\infty ]\) and \(\eta \) satisfying:

$$ \textstyle\begin{cases} \displaystyle {\frac{1}{p}= \frac{1}{p_{1}} +\frac{1}{p_{2}}, \quad 1= \frac{1}{r} +\frac{1}{ \overline{r}},} \\ \displaystyle {2-\eta -\frac{3}{r} \in ]0,1[,} \end{cases} $$

then we have

$$ \bigl\| M(f,g)\bigr\| _{L^{p}} \leq C_{F} \|f\|_{\displaystyle {\dot{B}_{p_{1},r} ^{2-\eta -\frac{3}{r}}}}\|g \|_{\displaystyle {\dot{B}_{p_{2}, \overline{r}}^{2+\eta -\frac{3}{\overline{r}}}}}. $$
(A.105)

Remark 20

In the present article we will use the previous proposition in the case \(p=p_{1}=p_{2}=\infty \), \(r=\infty\), \(\overline{r}=1\) and for \(\eta =2-(s+\gamma )\) where \(s\in ]0,1[\) and \(\sigma >0\) is such that \(s+\sigma <1\). In this case we end up with:

$$ \bigl\| M(f,g)\bigr\| _{L^{\infty }} \leq C_{F} \|f\|_{\dot{B}_{\infty ,\infty } ^{s+\sigma }}\|g \|_{\dot{B}_{\infty ,1}^{1-(s+\sigma )}}. $$
(A.106)

Proof

Let \(f\), \(g\) be smooth functions. From the expression of the kernel, there exists a constant \(C_{F}>0\) such that, thanks to the relations between the parameters:

$$\begin{aligned} \bigl\| M(f,g)\bigr\| _{L_{x}^{p}} &\leq C_{F}\int _{\mathbb{R}^{3}} \frac{\|f(.-y)-f(.) \|_{L_{x}^{p_{1}}}}{|y|^{2-\eta }} \cdot \frac{\|g(.-y)-g(.)\|_{L_{x} ^{p_{2}}}}{|y|^{2+\eta }} dy \\ &\leq C_{F} \biggl( \int _{\mathbb{R}^{3}} \frac{\|f(.-y)-f(.)\|_{L _{x}^{p_{1}}}^{r}}{|y|^{(2-\eta )r}} dy \biggr) ^{\frac{1}{r}} \biggl( \int _{\mathbb{R}^{3}} \frac{\|g(.-y)-g(.)\|_{L_{x}^{p_{2}}}^{ \overline{r}}}{|y|^{(2+\eta )\overline{r}}} dy \biggr) ^{\frac{1}{ \overline{r}}}. \end{aligned}$$
(A.107)

If we denote \(s_{1}=2-\eta -\frac{3}{r}\) and \(s_{2}=2+\eta -\frac{3}{ \overline{r}}\) then \((2-\eta )r= s_{1} r+3\) and \((2+\eta ) \overline{r} =s_{2} \overline{r} +3\). Moreover \(s_{1}+s_{2}=1\) so if \(1-\frac{3}{r}<\eta <2-\frac{3}{r}\) both regularity exponents are in \(]0,1[\) and we can use the following result

Theorem 2

([4], 2.36)

Let \(s \in ]0,1[\) and \(p,r\in [1,\infty]\). There exists a constant \(C\) such that for any \(u\in {\mathcal{C}} _{h}'\),

$$ C^{-1} \|u\|_{\dot{B}_{p,r}^{s}}\leq \biggl\| \frac{\|\tau _{-y}u -u\|_{L^{p}}}{|y|^{s}}\biggr\| _{L^{r} (\mathbb{R}^{d}; \frac{dy}{|y|^{d}})} \leq C \|u\|_{\dot{B}_{p,r}^{s}}. $$

This concludes the proof.  □

1.3.2 A.3.2 A Priori Estimates

For the comfort of the reader we state here the a priori estimates obtained in [16]. We consider the following transport diffusion system:

$$ \textstyle\begin{cases} \partial _{t} u +v.\nabla u -\varGamma u =F^{e}, \\ u_{|t=0}=u_{0} \end{cases} $$
(A.108)

Let us introduce \(\mu _{visc}=\frac{\max (\nu , \nu ')}{\min (\nu , \nu ')}\).

Proposition 13

(\(L^{p}\)-estimates) Assume that \(u\) solves (A.108) on \([0,T]\) with \(u_{0} \in L^{p}\) and that \(\|v\|_{L_{T}^{\infty }L^{6}} \leq C'\) (for some constant \(C'\)) with \(\operatorname{div}v=0\). Then there exists a constant \(D\) (depending on \(F\), \(\mu _{visc}\) and \(C'\)) such that for all \(t\in [0,T]\),

$$ \|u\|_{L_{t}^{\infty }L^{p}} \leq D^{t} \biggl(\|u_{0} \|_{L^{p}}+ \int _{0} ^{t} \|F^{e}(\tau ) \|_{L^{p}} d\tau \biggr). $$
(A.109)

Theorem 3

(Smoothing effect)

Assume that \(u\) solves (A.108) on \([T_{1}, T_{2}]\) with \(v\) satisfying \(\operatorname{div}v=0\) and \(\|v\|_{L^{\infty }({[T_{1},T_{2}]}, L^{6})} \leq C'\), \(u(T_{1}) \in L^{p}\), \(F^{e}\in L_{loc}^{1} L^{p}\) (for \(p\in [1,\infty ]\)). There exist two constants \(C\) and \(C_{F}\) such that if \(T_{2}-T_{1}>0\) is so small that:

  1. 1.

    \(2CC'(T_{2}-T_{1})^{\frac{1}{4}} \leq \nu _{0}^{\frac{3}{4}}\),

  2. 2.

    \(e^{C\int _{T_{1}}^{T_{2}} \|\nabla v (\tau )\|_{L^{\infty }}}-1 \leq \frac{1}{C_{F} \mu _{visc}}\).

Then, for all \(r\in [1,\infty ]\), there exists a constant \(C_{r,F}>0\) such that for all \(t\in [T_{1}, T_{2}]\),

$$ (\nu _{0}r)^{\frac{1}{r}} \|u\|_{\widetilde{L}^{r}([T_{1},t], B_{p, \infty }^{\frac{2}{r}})} \leq C_{r, F} \biggl( \bigl\| u(T_{1})\bigr\| _{L^{p}} + \int _{T_{1}}^{t} \bigl\| F^{e}(\tau )\bigr\| _{L^{p}} d\tau \biggr) . $$
(A.110)

Remark 21

In the particular case \(r=1\), \(p=\infty \) we obtain that:

$$ \nu _{0}\|u\|_{\widetilde{L}^{1}([T_{1},t], C_{*}^{2})} \leq C_{F} \biggl(\bigl\| u(T_{1})\bigr\| _{L^{\infty }} + \int _{T_{1}}^{t} \bigl\| F^{e}(\tau )\bigr\| _{L^{\infty }} d\tau \biggr) . $$
(A.111)

Theorem 4

(a priori estimates)

Let \(s\in ]-1,1[\). Assume that \(u\) solves (A.108) on \([T_{1}, T_{2}]\) with \(v\) satisfying \(\operatorname{div}v=0\) and \(\|v\|_{L^{\infty }({[T_{1},T_{2}]}, L^{6})} \leq C'\), \(u(T_{1})\in B_{p,\infty }^{s}\). Assume in addition that the external force term can be decomposed into \(F^{e}+G^{e}\), with \(F^{e}\in \widetilde{L}^{1}([T_{1},T_{2}], B_{p,\infty }^{s})\) (for \(p\in [1,\infty ]\)) and \(G^{e}\in \widetilde{L}^{\infty }([T_{1},T _{2}], B_{p,\infty }^{s+\frac{2}{r}-2})\) for \(r\in [1,\infty ]\) with \(s+\frac{2}{r}\in ]-1,1[\). There exist two constants \(C_{s}\) and \(C_{F}\) such that if \(T_{2}-T_{1}>0\) is so small that:

  1. 1.

    \(2CC'(T_{2}-T_{1})^{\frac{1}{4}} \leq \nu _{0}^{\frac{3}{4}}\),

  2. 2.

    \(e^{C\int _{T_{1}}^{T_{2}} \|\nabla v (\tau )\|_{L^{\infty }}}-1 \leq \frac{1}{C_{F} \mu _{visc}}\),

  3. 3.

    \(T_{2}-T_{1} +\int _{T_{1}}^{T_{2}} \|\nabla v\|_{L^{\infty }} d\tau \leq C_{s, \nu _{0}}\)

Then, there exists a constant \(C_{\nu _{0},F}>0\) such that for all \(r\in [1,\infty ]\) with \(s+\frac{2}{r}\in ]-1,1[\) and \(t\in [T_{1}, T _{2}]\),

$$\begin{aligned} &(\nu _{0}r)^{\frac{1}{r}}\|u\|_{\widetilde{L}^{r}([T_{1},t], B_{p,\infty }^{s+\frac{2}{r}})} \\ &\quad \leq C_{\nu _{0}, F} \biggl( \bigl\| u(T_{1})\bigr\| _{B_{p,\infty }^{s}} + \|F^{e}\|_{\widetilde{L}^{1}([T_{1},t],B_{p, \infty }^{s})} +\frac{1}{\nu _{0}}\|G^{e} \|_{\widetilde{L}^{\infty }([T _{1},t],B_{p,\infty }^{s-2})} \biggr) . \end{aligned}$$
(A.112)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charve, F. Asymptotics and Lower Bound for the Lifespan of Solutions to the Primitive Equations. Acta Appl Math 158, 11–47 (2018). https://doi.org/10.1007/s10440-018-0172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0172-3

Keywords

Navigation