Acta Applicandae Mathematicae

, Volume 153, Issue 1, pp 147–161 | Cite as

Infiltration Equation with Degeneracy on the Boundary

  • Huashui Zhan


This paper is mainly about the infiltration equation
$$ {u_{t}}= \operatorname{div} \bigl(a(x)|u|^{\alpha }{ \vert { \nabla u} \vert ^{p-2}}\nabla u\bigr),\quad (x,t) \in \Omega \times (0,T), $$
where \(p>1\), \(\alpha >0\), \(a(x)\in C^{1}(\overline{\Omega })\), \(a(x)\geq 0\) with \(a(x)|_{x\in \partial \Omega }=0\). If there is a constant \(\beta \) such that \(\int_{\Omega }a^{-\beta }(x)dx\leq c\), \(p>1+\frac{1}{\beta }\), then the weak solution is smooth enough to define the trace on the boundary, the stability of the weak solutions can be proved as usual. Meanwhile, if for any \(\beta >\frac{1}{p-1}\), \(\int_{\Omega }a^{-\beta }(x)dxdt=\infty \), then the weak solution lacks the regularity to define the trace on the boundary. The main innovation of this paper is to introduce a new kind of the weak solutions. By these new definitions of the weak solutions, one can study the stability of the weak solutions without any boundary value condition.


Infiltration equation Weak solution Boundary degeneracy Stability 

Mathematics Subject Classification

35K65 35K92 35K85 35R35 



The author would like to express his sincere thanks to the anonymous reviewers for their truly helpful comments.

Competing Interests

The author declares that he has no competing interests.


  1. 1.
    Gilding, B.G., Peletier, L.A.: The Cauchy problem for an equation in the theory of infiltration. Arch. Ration. Mech. Anal. 61, 127–140 (1976) MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Zhao, J., Yuan, H.: The Cauchy problem of some doubly nonlinear degenerate parabolic equations. Chin. Ann. Math., Ser. A 16(2), 179–194 (1995) (in Chinese) MATHGoogle Scholar
  3. 3.
    Chen, C., Wang, R.: Global existence and \(L^{\infty }\) estimates of solution for doubly degenerate parabolic equation. Acta Math. Sin., Ser. A 44, 1089–1098 (2001) (in Chinese) MathSciNetMATHGoogle Scholar
  4. 4.
    Lu, G.: Nonlinear degenerate parabolic equations in infiltration through a porous medium. Commun. Nonlinear Sci. Numer. Simul. 3, 97–100 (1998) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dahlberg, B.E.J., Kenig, C.E.: Nonnegative solutions of the porous medium equation. Commun. Partial Differ. Equ. 9, 661–678 (1984) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Zhao, J.: Singular solutions for a convection diffusion equation with absorption. Math. Acta Sci. 15, 431–441 (1995) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Lions, J.L.: Quelques méthodes de resolution des problèmes aux limites non linear. Gauthier-Villars, Paris (1969) MATHGoogle Scholar
  8. 8.
    Ohara, Y.: \(L^{\infty }\) estimates of solutions of some nonlinear degenerate parabolic equations. Nonlinear Anal. TMA 18, 413–426 (1992) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Yuan, J., Lian, Z., Cao, L., Gao, J., Xu, J.: Extinction and positivity for a doubly nonlinear degenerate parabolic equation. Acta Math. Sin. Engl. Ser. 23, 1751–1756 (2007) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Manfredi, J., Vespri, V.: Large time behavior of solutions to a class of doubly nonlinear parabolic equations. Electron. J. Differ. Equ. 1994(2), 02 (1994) MathSciNetMATHGoogle Scholar
  11. 11.
    Lee, K., Petrosyan, A., Vázquez, J.L.: Large time geometric properties of solutions of the evolution \(p\)-Laplacian equation. J. Differ. Equ. 229, 389–411 (2006) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Zhan, H.: Large time behavior of solutions to a class of doubly nonlinear parabolic equations. Appl. Math. 53, 521–533 (2008) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Zhan, H.: The asymptotic behavior of solutions for a class of doubly degenerate nonlinear parabolic equations. J. Math. Anal. Appl. 370, 1–10 (2010) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Wu, Z., Zhao, J., Yin, J., Li, H.: Nonlinear Diffusion Equations. World Scientific, Singapore (2001) CrossRefMATHGoogle Scholar
  15. 15.
    Zhan, H., Yuan, H.: Solutions of a strongly degenerate parabolic equation. J. Jilin Univ. 544, 671–676 (2016) (in Chinese) MathSciNetMATHGoogle Scholar
  16. 16.
    Zhan, H.: The stability of the solutions of an equation related to the p-Laplacian with degeneracy on the boundary. Bound. Value Probl. 2016, 178 (2016). doi: 10.1186/s13661-016-0684-6 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Zhan, H.: On a parabolic equation related to the p-Laplacian. Bound. Value Probl. 2016, 78 (2016). doi: 10.1186/s13661-016-0587-6 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Applied MathematicsXiamen University of TechnologyXiamenChina

Personalised recommendations