Skip to main content
Log in

ℒ-Splines and Viscosity Limits for Well-Balanced Schemes Acting on Linear Parabolic Equations

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Well-balanced schemes, nowadays mostly developed for both hyperbolic and kinetic equations, are extended in order to handle linear parabolic equations, too. By considering the variational solution of the resulting stationary boundary-value problem, a simple criterion of uniqueness is singled out: the \(C^{1}\) regularity at all knots of the computational grid. Being easy to convert into a finite-difference scheme, a well-balanced discretization is deduced by defining the discrete time-derivative as the defect of \(C^{1}\) regularity at each node. This meets with schemes formerly introduced in the literature relying on so-called ℒ-spline interpolation of discrete values. Various monotonicity, consistency and asymptotic-preserving properties are established, especially in the under-resolved vanishing viscosity limit. Practical experiments illustrate the outcome of such numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See (for instance) http://dlmf.nist.gov/12.2.

References

  1. Adam, D., Felgenhauer, A., Roos, H.-G., Stynes, M.: A nonconforming finite element method for a singularly perturbed boundary value problem. Computing 54, 1–25 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: Fundamental properties of generalized splines. Proc. Natl. Acad. Sci. USA 52(6), 1412–1419 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth, M., Dorfler, W.: Fundamental systems of numerical schemes for linear convection-diffusion equations and their relationship to accuracy. Computing 66, 199–229 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. De, D.N., Allen, G.: A suggested approach to finite difference representation of differential equations. Q. J. Mech. Appl. Math. 15, 11–33 (1962)

    Article  MathSciNet  Google Scholar 

  5. Amadori, D., Gosse, L.: Error estimates for well-balanced schemes on simple balance laws: one-dimensional position-dependent models. BCAM SpringerBriefs in Mathematics (2015)

  6. Babuska, I., Osborn, J.E.: Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, W.Z., Jin, S.: The random projection method for stiff multi-species detonation capturing. J. Comput. Phys. 178, 37–57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berger, A.E., Solomon, J.M., Ciment, M.: An analysis of a uniformly accurate difference method for a singular perturbation problem. Math. Comput. 37, 79–94 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berger, A.E., Han, H., Kellogg, R.B.: A priori estimates and analysis of a numerical method for a turning point problem. Math. Comput. 42, 465–492 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buffa, A., Monk, P.: Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM: M2AN 42, 925–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Canosa, J., Gomes De Oliveira, R.: A new method for the solution of the Schrodinger equation. J. Comput. Phys. 5, 188–207 (1970)

    Article  MATH  Google Scholar 

  12. McCartin, B.J.: Computation of exponential splines. SIAM J. Sci. Comput. 11, 242–262 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cessenat, O., Despres, B.: Application of an ultra-weak variational formulation of elliptic PDE’s to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35, 255–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Champion, R., Lenard, C.T., Mills, T.M.: A variational approach to splines. ANZIAM J. 42, 119–135 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheung, Y.K., Jin, W.G., Zienkiewicz, O.C.: Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions. Commun. Appl. Numer. Methods 5, 159–169 (1989)

    Article  MATH  Google Scholar 

  16. Despres, B., Buet, Ch.: The structure of well-balanced schemes for Friedrichs systems with linear relaxation. Appl. Math. Comput. 272, 440–459 (2016)

    MathSciNet  Google Scholar 

  17. Weinan, E.: Homogenization of scalar conservation laws with oscillatory forcing terms. SIAM J. Appl. Math. 52, 959–972 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farrell, P.A., Gartland, E.C. Jr: A uniform convergence result for a turning point problem. In: BAIL V, Shanghai, 1988. Boole Press Conf. Ser., vol. 12, pp. 127–132 (1988)

    Google Scholar 

  19. Gartland, E.C. Jr.: Discrete weighted mean approximation of model convection-diffusion equation. SIAM J. Sci. Stat. Comput. 3, 460–472 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gartland, E.C. Jr.: Strong stability of compact discrete boundary value problems via exact discretizations. SIAM J. Numer. Anal. 25, 111–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gartland, E.C. Jr.: On the uniform convergence of the Scharfetter-Gummel discretization in one dimension. SIAM J. Numer. Anal. 30, 749–758 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gil, A., Segura, J., Temme, N.: Computing the real parabolic cylinder functions \(U(a,x)\), \(V(a,x)\). ACM Trans. Math. Softw. 32, 70–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Glimm, J., Sharp, D.H.: An \(S\)-matrix theory for classical nonlinear physics. Found. Phys. 16, 125–141 (1986)

    Article  MathSciNet  Google Scholar 

  24. Gosse, L.: Computing Qualitatively Correct Approximations of Balance Laws. Exponential-Fit, Well-Balanced and Asymptotic-Preserving. SIMAI Springer Series (2013). ISBN 978-88-470-2891-3

    Book  MATH  Google Scholar 

  25. Gosse, L.: Dirichlet-to-Neumann mappings and finite-differences for anisotropic diffusion. Comput. Fluids 156, 58–65 (2017). doi:10.1016/j.compfluid.2017.06.026

    Article  MathSciNet  Google Scholar 

  26. Gosse, L., LeRoux, A.Y.: Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes. C. R. Acad. Sci. Paris Sér. I 323, 543–546 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Greenberg, J., LeRoux, A.Y.: A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)

    Article  MathSciNet  Google Scholar 

  28. Han, H., Huang, Z., Kellogg, R.B.: A tailored finite point method for a singular perturbation problem on an unbounded domain. J. Sci. Comput. 36, 243–261 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Herrera, I.: The algebraic theory approach for ordinary differential equations: highly accurate finite differences. Numer. Methods Partial Differ. Equ. 3, 199–218 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, L., Liu, T.P.: A conservative, piecewise-steady difference scheme for transonic nozzle flow. Comput. Math. Appl. 12A, 377–388 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Isaacson, E., Temple, B.: Convergence of the \(2 \times 2\) Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55, 625–640 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kuo, C.C.J., Levy, B.: Mode-dependent finite-difference discretization of linear homogeneous differential equations. SIAM J. Sci. Comput. 9, 992–1015 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jerome, J.W.: On uniform approximation by certain generalized spline functions. J. Approx. Theory 7, 143–154 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jerome, J.W.: Analysis of Charge Transport: Mathematical Theory of Semiconductor Devices. Springer, Berlin (1996)

    Book  Google Scholar 

  35. Kimmeldorf, G.S., Wahba, G.: The correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat. 41, 495–502 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kita, E., Kamiya, N.: Trefftz method: an overview. Adv. Eng. Softw. 24, 3–12 (1995)

    Article  MATH  Google Scholar 

  37. LeVeque, R.J., Yee, H.: A study of numerical methods for hyperbolic equations with stiff source terms. J. Comput. Phys. 86(1), 187–210 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, T.P.: Quasilinear hyperbolic systems. Commun. Math. Phys. 68, 141–172 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Makarov, V.L., Samarskii, A.A.: Application of exact difference schemes to estimation of the convergence rate of the method of lines. Sem. Inst. Prikl. Mat. Dokl. 14, 18–23 (1980)

    Google Scholar 

  40. Niijima, K.: A uniformly convergent difference scheme for a semilinear singular perturbation problem. Numer. Math. 43, 175–198 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. O’Malley, R.: On boundary value problems for a singularly perturbed differential equation with a turning point. SIAM J. Math. Anal. 1, 479–490 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  42. O’Malley, R.: Singular Perturbation Methods for Ordinary Differential Equations. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  43. Osher, S.: Nonlinear singular perturbation problems and one-sided difference schemes. SIAM J. Numer. Anal. 18, 129–144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pruess, S.: Estimating the eigenvalues of Sturm-Liouville problems by approximating the differential equation. SIAM J. Numer. Anal. 10, 55–68 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  45. Roos, H.-G.: Global uniformly convergent schemes for a singularly perturbed boundary-value problem using patched base spline-functions. J. Comput. Appl. Math. 29, 69–77 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Roos, H.-G.: An analytically oriented discretization technique for boundary value problems. Abh. Math. Semin. Univ. Hamb. 61, 139–152 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems, 2nd edn. Springer Series in Computational Mathematics, vol. 24 (2008). ISBN 978-3-540-34466-7

    MATH  Google Scholar 

  48. Salama, A.A., Zidan, H.Z.: Fourth-order schemes of exponential type for singularly perturbed parabolic partial differential equations. Rocky Mt. J. Math. 36, 1049–1068 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Samarskii, A.A.: The Theory of Difference Schemes. Monographs and Textbooks in Pure and Applied Mathematics, vol. 240. Dekker, New York (2001). ISBN 0-8247-0468-1

    Book  MATH  Google Scholar 

  50. Scharfetter, H.L., Gummel, H.K.: Large signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron Devices 16, 64–77 (1969)

    Article  Google Scholar 

  51. Schmidt, E., Lancaster, P., Watkins, D.: Bases of splines associated with constant coefficient differential operators. SIAM J. Numer. Anal. 12, 630–645 (1975)

    Article  MathSciNet  Google Scholar 

  52. Schultz, M.H., Varga, R.S.: \(L\)-splines. Numer. Math. 10, 345–369 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  53. Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, Cambridge (2007). ISBN 978-0-521-70512-7

    Book  MATH  Google Scholar 

  54. Shevaldin, V.-T.: Approximation by local \(L\)-splines corresponding to a linear differential operator of the second order. Proc. Steklov Inst. Math. 6, S178–S196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sod, G.A.: A random choice method with application to reaction-diffusion systems in combustion. Comput. Math. Appl. 11, 129–144 (1985)

    Article  MathSciNet  Google Scholar 

  56. Temme, N.: Numerical and asymptotic aspects of parabolic cylinder functions. J. Comput. Appl. Math. 121, 221–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tikhonov, A.N., Samarskii, A.A.: Homogeneous difference schemes. USSR Comput. Math. Math. Phys. 1, 5–67 (1962)

    Article  MathSciNet  Google Scholar 

  58. Trefftz, E.: Ein gegenstuck zum Ritz’schen verfahren. In: Proc. 2nd Int. Congr. Appl. Mech., Zurich, pp. 131–137 (1926)

    Google Scholar 

  59. van Leer, B.: On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe. SIAM J. Sci. Stat. Comput. 5, 1–20 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, H.: Convergence of a numerical method for solving discontinuous Fokker–Planck equations. SIAM J. Numer. Anal. 45, 1425–1452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Gosse.

Appendix: An External Force \(f(x)\) in a Reaction-Diffusion Equation

Appendix: An External Force \(f(x)\) in a Reaction-Diffusion Equation

Hereafter, the aim is to solve the initial-boundary problem,

$$ \partial_{t}u -\varepsilon \partial_{xx}u + q(x)u = f(x), \quad u(t, \pm 1)=u^{\pm }, \quad x \in (-1,1), $$
(A.1)

so that the resulting scheme recovers exactly the collection of points \(v(x_{j})\), for \(x_{j} \in \Delta \) the nodes of the grid. So, at each time-step \(t^{n}\), the “ℒ-spline” interpolation of the data \(u_{j}^{n}\) proceeds by solving the stationary equation between \(u_{j}^{n}\) and \(u_{j+1}^{n}\). Since, in \((x_{j},x_{j+1})\), both \(\bar{q}\) and \(\bar{f}\) are constant, each “local profile” is obtained by a standard “variation of constants” technique involving exponential functions:

  • let \(r_{j-\frac{1}{2}}=\sqrt{\bar{q}/\varepsilon }>0\) in \((x_{j-1},x _{j})\) and \(M_{j-\frac{1}{2}}\) be the matrix in,

    $$ \left ( \textstyle\begin{array}{c} u_{j-1}^{n} - \frac{\bar{f}}{\bar{q}} \\ u_{j}^{n} - \frac{\bar{f}}{\bar{q}} \end{array}\displaystyle \right ) =\left ( \textstyle\begin{array}{c@{\quad}c} \exp (r_{j-\frac{1}{2}} x_{j-1}) & \exp (-r_{j-\frac{1}{2}} x_{j-1}) \\ \exp (r_{j-\frac{1}{2}} x_{j}) & \exp (-r_{j-\frac{1}{2}} x_{j}) \\ \end{array}\displaystyle \right ) \left ( \textstyle\begin{array}{c} A \\ B \end{array}\displaystyle \right ) . $$

    Yet the determinant \(|M_{j-\frac{1}{2}}|= -2\sinh (r_{j-\frac{1}{2}} \Delta x)\neq0\).

  • By mimicking Corollary 1, inside \((x_{j-1},x_{j})\),

    $$ v'(x)=r_{j-\frac{1}{2}} \bigl(A \exp (r_{j-\frac{1}{2}} x) - B \exp (-r _{j-\frac{1}{2}} x) \bigr), $$

    and since \(M_{j\pm \frac{1}{2}}\) are invertible, \(C^{1}\) smoothness is just:

    $$\begin{aligned} &r_{j-\frac{1}{2}}\Biggl\langle \left ( \textstyle\begin{array}{c} u_{j-1}^{n} - \frac{\bar{f}}{\bar{q}} \\ u_{j}^{n} - \frac{\bar{f}}{\bar{q}} \end{array}\displaystyle \right ) , M_{j- \frac{1}{2}}^{-T}\left ( \textstyle\begin{array}{c} \exp (r_{j-\frac{1}{2}} x_{j}) \\ -\exp (-r_{j-\frac{1}{2}} x_{j}) \end{array}\displaystyle \right ) \Biggr\rangle \\ &\quad =r_{j+\frac{1}{2}}\Biggl\langle \left ( \textstyle\begin{array}{c} u_{j}^{n} - \frac{\bar{f}}{\bar{q}} \\ u_{j+1}^{n} - \frac{\bar{f}}{\bar{q}} \end{array}\displaystyle \right ) , M_{j+ \frac{1}{2}}^{-T}\left ( \textstyle\begin{array}{c} \exp (r_{j+\frac{1}{2}} x_{j}) \\ -\exp (-r_{j+\frac{1}{2}} x_{j}) \end{array}\displaystyle \right ) \Biggr\rangle , \end{aligned}$$
    (A.2)

    where we have used the adjoint of the inverse matrices \(M_{j\pm \frac{1}{2}}^{-1}\) so that we don’t need the values of \(A,B\). Of course, the \(( \frac{\bar{f}}{\bar{q}} ) _{j \pm \frac{1}{2}}\) are different on both sides of the equality. By developing (A.2),

    $$\begin{aligned} &\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}-\frac{\varepsilon }{\Delta x} \biggl[ \frac{r_{j+\frac{1}{2}}}{\sinh (r_{j+\frac{1}{2}}\Delta x)} \bigl( u_{j+1}^{n}-\cosh (r_{j+\frac{1}{2}}\Delta x)u_{j}^{n} \bigr) \\ &\quad {}-\frac{r_{j-\frac{1}{2}}}{\sinh (r_{j-\frac{1}{2}}\Delta x)} \bigl( \cosh (r _{j-\frac{1}{2}}\Delta x)u_{j}^{n}-u_{j-1}^{n} \bigr) \\ &\quad {}+r_{j+\frac{1}{2}}\frac{\cosh (r_{j+\frac{1}{2}}\Delta x)-1}{\sinh (r _{j+\frac{1}{2}}\Delta x)} \cdot \biggl( \frac{\bar{f}}{\bar{q}} \biggr) _{j + \frac{1}{2}} \\ &\quad {} +r_{j-\frac{1}{2}}\frac{\cosh (r_{j-\frac{1}{2}}\Delta x)-1}{ \sinh (r_{j-\frac{1}{2}}\Delta x)}\cdot \biggl( \frac{\bar{f}}{\bar{q}} \biggr) _{j - \frac{1}{2}} \biggr] =0. \end{aligned}$$

    Consistency can be established proceeding like in Proposition 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosse, L. ℒ-Splines and Viscosity Limits for Well-Balanced Schemes Acting on Linear Parabolic Equations. Acta Appl Math 153, 101–124 (2018). https://doi.org/10.1007/s10440-017-0122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-017-0122-5

Keywords

Mathematics Subject Classification (2010)

Navigation