Advertisement

Acta Applicandae Mathematicae

, Volume 153, Issue 1, pp 1–54 | Cite as

Asymptotic Analysis of Boundary Layers in a Repulsive Particle System

  • Cameron L. Hall
  • Thomas Hudson
  • Patrick van Meurs
Article
  • 121 Downloads

Abstract

This paper studies the boundary behaviour at mechanical equilibrium at the ends of a finite interval of a class of systems of interacting particles with monotone decreasing repulsive force. This setting covers, for instance, pile-ups of dislocations, dislocation dipoles and dislocation walls. The main challenge in characterising the boundary behaviour is to control the nonlocal nature of the pairwise particle interactions. Using matched asymptotic expansions for the particle positions and rigorous development of an appropriate energy via \(\Gamma \)-convergence, we obtain the equilibrium equation solved by the boundary layer correction, associate an energy with an appropriate scaling to this correction, and provide decay rates into the bulk.

Keywords

Particle system Boundary layer Discrete-to-continuum asymptotics Matched asymptotic expansions \(\Gamma \)-convergence 

Mathematics Subject Classification (2010)

74Q05 74G10 41A60 

Notes

Acknowledgements

The authors would like to thank Mark Peletier for valuable discussions, and TU Eindhoven for providing funds to cover research visits by TH and CH. TH and PvM would also like to thank the Hausdorff Research Institute for Mathematics in Bonn for hosting them during the junior workshop ‘Analytic approaches to scaling limits for random systems’ during which work on this project was carried out.

Conflict of Interest

The authors declare that there is no conflict of interest regarding this work.

References

  1. 1.
    Bernoff, A.J., Topaz, C.M.: Nonlocal aggregation models: a primer of swarm equilibria. SIAM Rev. 55(4), 709–747 (2013) MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices, vol. 13. Springer, Media (2012) MATHGoogle Scholar
  3. 3.
    Blanc, X., Le Bris, C., Lions, P.L.: Atomistic to continuum limits for computational materials science. M2AN Math. Model. Numer. Anal. 41(2), 391–426 (2007) MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Braides, A.: \(\Gamma \)-Convergence for Beginners. Oxford Lecture Series in Mathematics and Its Applications, vol. 22. Oxford University Press, Oxford (2002) CrossRefMATHGoogle Scholar
  5. 5.
    Braides, A., Cicalese, M.: Surface energies in nonconvex discrete systems. Math. Models Methods Appl. Sci. 17(7), 985–1037 (2007) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Braides, A., Dal Maso, G., Garroni, A.: Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal. 146(1), 23–58 (1999) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Braides, A., Truskinovsky, L.: Asymptotic expansions by \(\Gamma \)-convergence. Contin. Mech. Thermodyn. 20(1), 21–62 (2008) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Brauchart, J.S., Hardin, D.P., Saff, E.B.: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. Contemp. Math. 578, 31–61 (2012) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Carrier, G.F., Krook, M., Pearson, C.E.: Functions of a Complex Variable—Theory and Technique. SIAM, Philadelphia (2005) CrossRefMATHGoogle Scholar
  10. 10.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009) CrossRefGoogle Scholar
  11. 11.
    Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. Reidel, Dordrecht (1974) CrossRefMATHGoogle Scholar
  12. 12.
    Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkhäuser, Boston (1993) CrossRefMATHGoogle Scholar
  13. 13.
    Dyson, F.J.: Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3(1), 140–156 (1962) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Flatley, L.C., Theil, F.: Face-centered cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 218(1), 363–416 (2015) MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Garroni, A., van Meurs, P., Peletier, M.A., Scardia, L.: Boundary-layer analysis of a pile-up of walls of edge dislocations at a lock. Math. Models Methods Appl. Sci. 26(14), 2735–2768 (2016) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Geers, M.G.D., Peerlings, R.H.J., Peletier, M.A., Scardia, L.: Asymptotic behaviour of a pile-up of infinite walls of edge dislocations. Arch. Ration. Mech. Anal. 209, 495–539 (2013) MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gladwell, G.M.: Contact Problems in the Classical Theory of Elasticity. Springer, Berlin (1980) CrossRefMATHGoogle Scholar
  18. 18.
    Hall, C.L.: Asymptotic expressions for the nearest and furthest dislocations in a pile-up against a grain boundary. Philos. Mag. 90(29), 3879–3890 (2010) CrossRefGoogle Scholar
  19. 19.
    Hall, C.L.: Asymptotic analysis of a pile-up of regular edge dislocation walls. Mater. Sci. Eng. A 530, 144–148 (2011) CrossRefGoogle Scholar
  20. 20.
    Hall, C.L., Chapman, S.J., Ockendon, J.R.: Asymptotic analysis of a system of algebraic equations arising in dislocation theory. SIAM J. Appl. Math. 70(7), 2729–2749 (2010) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hinch, E.J.: Perturbation Methods. Cambridge University Press, Cambridge (1991) CrossRefMATHGoogle Scholar
  22. 22.
    Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn. Wiley, New York (1982) MATHGoogle Scholar
  23. 23.
    Hudson, T.: Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Netw. Heterog. Media 8(2), 501–527 (2013) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ivanov, V.A., Rodionova, A.S., Martemyanova, J.A., Stukan, M.R., Müller, M., Paul, W., Binder, K.: Wall-induced orientational order in athermal semidilute solutions of semiflexible polymers: Monte Carlo simulations of a lattice model. J. Chem. Phys. 138, 234903 (2013) CrossRefGoogle Scholar
  25. 25.
    Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc., Math. Phys. Eng. Sci. 106(738), 463–477 (1924) CrossRefGoogle Scholar
  26. 26.
    Landkof, N.S.: Foundations of Modern Potential Theory, vol. 180. Springer, Berlin (1972) CrossRefMATHGoogle Scholar
  27. 27.
    Lee, A.A., Kondrat, S., Kornyshev, A.A.: Single-file charge storage in conducting nanopores. Phys. Rev. Lett. 113(4), 048701 (2014) CrossRefGoogle Scholar
  28. 28.
    Lyness, J.N.: Finite-part integrals and the Euler–Maclaurin expansion. In: Approximation and Computation: A Festschrift in Honor of Walter Gautschi, vol. 119, pp. 297–407. Birkhäuser, Boston (1993) Google Scholar
  29. 29.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953) CrossRefGoogle Scholar
  30. 30.
    van Meurs, P., Muntean, A.: Upscaling of the dynamics of dislocation walls. Adv. Math. Sci. Appl. 24(2), 401–414 (2014) MathSciNetMATHGoogle Scholar
  31. 31.
    van Meurs, P., Muntean, A., Peletier, M.A.: Upscaling of dislocation walls in finite domains. Eur. J. Appl. Math. 25(6), 749–781 (2014) MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Monegato, G., Lyness, J.N.: The Euler–Maclaurin expansion and finite-part integrals. Numer. Math. 81, 273–291 (1998) MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Nussinov, Z., van den Brink, J.: Compass models: Theory and physical motivations. Rev. Mod. Phys. 87, 1–59 (2015) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz interactions. J. Inst. Math. Jussieu 16(3), 501–569 (2017) MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Russo, G., Smereka, P.: Computation of strained epitaxial growth in three dimensions by kinetic Monte Carlo. J. Comput. Phys. 214(2), 809–828 (2006) MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Saff, E.B., Kuijlaars, A.B.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997) MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Scardia, L., Schlömerkemper, A., Zanini, C.: Boundary layer energies for nonconvex discrete systems. Math. Models Methods Appl. Sci. 21(4), 777–817 (2011) MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Schaarwächter, W., Ebener, H.: Acoustic emission: a probe into dislocation dynamics in plasticity. Acta Metall. Mater. 38(2), 195–205 (1990) CrossRefGoogle Scholar
  39. 39.
    Sidi, A.: Euler–Maclaurin expansions for integrals with arbitrary algebraic-logarithmic endpoint singularities. Constr. Approx. 36, 331–352 (2012) MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Szlufarska, I.: Atomistic simulations of nanoindentation. Mater. Today 9(5), 42–50 (2006) CrossRefGoogle Scholar
  41. 41.
    Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006) MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Thomas, J.M., Thomas, W.J.: Principles and Practice of Heterogeneous Catalysis. Wiley, New York (2014) Google Scholar
  43. 43.
    Voskoboinikov, R.E., Chapman, S.J., Mcleod, J.B., Ockendon, J.R.: Asymptotics of edge dislocation pile-up against a bimetallic interface. Math. Mech. Solids 14(1–2), 284–295 (2009) MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997) CrossRefGoogle Scholar
  45. 45.
    Wang, W., Wang, T.: General identities on Bell polynomials. Comput. Math. Appl. 58(1), 104–118 (2009) MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Wennberg, C.L., Murtola, T., Hess, B., Lindahl, E.: Lennard–Jones lattice summation in bilayer simulations has critical effects on surface tension and lipid properties. J. Chem. Theory Comput. 9(8), 3527–3537 (2013) CrossRefGoogle Scholar
  47. 47.
    Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955) MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Zschocke, F., Vojta, M.: Physical states and finite-size effects in Kitaev’s honeycomb model: Bond disorder, spin excitations, and NMR line shape. Phys. Rev. B 92, 014,403 (2015) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Cameron L. Hall
    • 1
  • Thomas Hudson
    • 2
  • Patrick van Meurs
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of LimerickLimerickIreland
  2. 2.École des Ponts ParisTechCERMICSChamps-sur-MarneFrance
  3. 3.Faculty of Mathematics and PhysicsKanazawa UniversityKanazawaJapan

Personalised recommendations