Skip to main content
Log in

A Stabilized Galerkin Scheme for the Convection-Diffusion-Reaction Equations

Acta Applicandae Mathematicae Aims and scope Submit manuscript

Cite this article

Abstract

A fully discrete stabilized scheme is proposed for solving the time-dependent convection-diffusion-reaction equations. A time derivative term results in our stabilized algorithm. The finite element method for spatial discretization and the backward Euler or Crank-Nicolson scheme for time discretization are employed. The long-time stability and convergence are established in this article. Finally, some numerical experiments are provided to confirm the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Codina, R.: Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 156, 185–210 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hughes, T.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)

    Article  MATH  Google Scholar 

  3. Hughes, T., Mazzei, L., Jansen, K.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3, 47–59 (2000)

    Article  MATH  Google Scholar 

  4. Hughes, T., Sangalli, G.: Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal. 26, 1485–1503 (2007)

    MathSciNet  Google Scholar 

  5. John, V., Kaya, S.: A finite element variational multiscale method for the Navier-Stokes equations. SIAM J. Sci. Comput. 26, 1485–1503 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. John, V., Kaya, S.: Finite element error analysis of a variational multiscale method for the Navier-Stokes equations. Adv. Comput. Math. 28, 43–61 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. John, V., Kaya, S., Layton, W.: A two-level variational multiscale method for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Eng. 195, 4594–4603 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kaya, S., Layton, W.: Subgrid-scale eddy viscosity methods are variational multiscale methods. Technical report, University of Pittsburgh, 2003

  9. Layton, W., Lee, H., Peterson, J.: A defect-correction method for the incompressible Navier-Stokes equations. Appl. Math. Comput. 129, 1–19 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Layton, W.: Superconvergence of finite element discretization of time relaxation models of advection. BIT Numer. Math. 47, 565–576 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Layton, W., Neda, M.: Truncation of scales by time relaxation. J. Math. Anal. Appl. 325, 788–807 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Anitescu, M., Pahlevani, F., Layton, W.: Implicit for local effects and explicit for nonlocal effects is unconditionally stable. Electron. Trans. Numer. Anal. 18, 174–187 (2004)

    MATH  MathSciNet  Google Scholar 

  13. Labovsky, A., Layton, W., Manica, C., Neda, M., Rebholz, L.: The stabilized extrapolated trapezoidal finite-element method for the Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 958–974 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Layton, W.: Introduction to the Numerical Analysis of Incompressible Viscous Flows. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  15. Guermond, J.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. Math. Model. Numer. Anal. 33, 1293–1316 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guermond, J., Marra, A., Quartapelle, L.: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers. Comput. Methods Appl. Mech. Eng. 195, 5857–5876 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Heitmann, N.: Subgridscale stabilization of time-dependent convection dominated diffusive transport. J. Math. Anal. Appl. 331, 38–50 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Santos, I., Almeida, R.: A nonlinear subgrid method for advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 196, 4771–4778 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Davis, L., Pahlevani, F.: Semi-implicit schemes for transient Navier-Stokes equations and eddy viscosity models. Numer. Methods Partial Differ. Equ. 25, 212–231 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hou, Y., Liu, Q.: A stabilized semi-implicit Galerkin scheme for Navier-Stokes equations. J. Comput. Appl. Math. 231, 552–560 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Burie, J., Marion, M.: Multilevel methods in space and time for the Navier-Stokes equations. SIAM J. Numer. Anal. 34, 1574–1599 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shen, J.: Long time stability and convergence for fully discrete nonlinear Galerkin methods. Appl. Anal. 38, 201–229 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem, part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem, part II: stability of solutions and error estimates uniform in time. SIAM J. Numer. Anal. 23, 750–777 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comput. 79(210), 707–731 (2010)

    MATH  MathSciNet  Google Scholar 

  26. Bochev, P., Gunzburger, M., Shadid, J.: Stability of the SUPG finite element method for transient advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 193, 2301–2323 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referees for their helpful comments and suggestions, which lead to substantial improvements of this presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanren Hou.

Additional information

Subsidized by the Fundamental Research Funds for the Central Universities (Grant Nos. 08142013 and 08143045), NSF of China (Grant Nos. 11171269 and 11201254) and the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110201110027).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Q., Hou, Y., Ding, L. et al. A Stabilized Galerkin Scheme for the Convection-Diffusion-Reaction Equations. Acta Appl Math 130, 115–134 (2014). https://doi.org/10.1007/s10440-013-9840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-013-9840-5

Keywords

Navigation