Accuracy of a Low-Cost Continuous Subcutaneous Insulin Infusion Pump Prototype: In Vitro Study Using Combined Methodologies

Abstract

Considering that infusion devices are safety-critical systems, the main goal of this paper is to evaluate the infusion accuracy and precision of a low-cost insulin infusion pump prototype, using two different methodologies. The first one used a microgravimetric method adapted from IEC60601-2-24, and the second estimated the displacement of the syringe plunger in response to programmed infusions. The low-cost prototype resulted in a compact and functional device with good accuracy. The prototype infused the programmed fluid doses with an average error of 2.2%. The percentage of infusions within ± 5% accuracy was 42.50 and of 84.17% for the ± 15% limit. The developed miniaturized mechanical system presented functionality, precision, and accuracy when coupled to the electronic system, responded well to repeatability tests. Additionally, the results from in vitro tests demonstrated that the performance of the device is satisfactory and comparable to commercial continuous insulin infusion pumps. This study presents a low-cost prototype as a candidate to be used by type 1 diabetic patients in Brazil and developing countries, especially in the context of public health.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Notes

  1. 1.

    aWe defined a constant of 786 steps for infusing 1 IU of insulin in the programming model of the low-cost insulin pump prototype software.

Abbreviations

ANOVA:

Analysis of variance

DCCT:

Diabetes control and complications trial

DM:

Diabetes mellitus

CSII:

Continuous subcutaneous insulin infusion

IEC:

International electrotechnical commission

IDF:

International diabetes federation

MDD:

Multiple daily doses

SC:

Subcutaneous

T1D:

Type 1 diabetes mellitus

References

  1. 1.

    ABNT, N. IEC 60601-2-24: Requisitos particulares para a segunrança básica e o desempenho essencial de bombas de infusão e de controladores de infusão, 2005.

  2. 2.

    Balda, C. A., and A. Pacheco-Silva. Artigo de Revisão Aspectos imunológicos do diabetes melito tipo 1. Rev Ass Med Bras. 45:175–180, 1999.

    CAS  Article  Google Scholar 

  3. 3.

    Borot, S., S. Franc, J. Cristante, A. Penfornis, P. Y. Benhamou, B. Guerci, H. Hanaire, E. Renard, Y. Reznik, C. Simon, and G. Charpentier. Accuracy of a new patch pump based on a microelectromechanical system (MEMS) compared to other commercially available insulin pumps: Results of the first in vitro and in vivo studies. J. Diabetes Sci. Technol. 8:1133–1141, 2014.

    Article  Google Scholar 

  4. 4.

    Bowen, J. L., and C. J. Allender. A comparative pulse accuracy study of two commercially available patch insulin infusion pumps. Eur. Endocrinol. 12:79–84, 2016.

    Article  Google Scholar 

  5. 5.

    Breton, M. D., and B. P. Kovatchev. Impact of blood glucose self-monitoring errors on glucose variability, risk for hypoglycemia, and average glucose control in type 1 diabetes: An in silico study. J. Diabetes Sci. Technol. 4:562–570, 2010.

    Article  Google Scholar 

  6. 6.

    Campos-Náñez, E., J. E. Layne, and H. C. Zisser. In silico modeling of minimal effective insulin doses using the UVA/PADOVA type 1 diabetes simulator. J. Diabetes Sci. Technol. 12:376–380, 2018.

    Article  Google Scholar 

  7. 7.

    Coskun, H., O. Gul, O. Ferhanoglu, and Y. D. Gokdel. Design and implementation of a low-cost high-performance syringe pump system. 2017 21st Natl. Biomed. Eng. Meet. BIYOMUT 2017 1–4, 2018. https://doi.org/10.1109/biyomut.2017.8478979

  8. 8.

    DeltaLife. Equipamentos Veterinários, Equipamentos Médicos - Delta Life - Tecnologia a serviço da vidaat. https://www.deltalife.com.br/

  9. 9.

    Freckmann, G., U. Kamecke, D. Waldenmaier, C. Haug, and R. Ziegler. Accuracy of bolus and basal rate delivery of different insulin pump systems. Diabetes Technol. Ther. 21:201–208, 2019.

    CAS  Article  Google Scholar 

  10. 10.

    Girardot, S., F. Mousin, J. Vezinet, P. Jacquemier, S. Hardy, and J. P. Riveline. Kalman filter-based novel methodology to assess insulin pump accuracy. Diabetes Technol. Ther. 21:533–537, 2019.

    Article  Google Scholar 

  11. 11.

    Gomes, M. B., A. S. De Mattos Matheus, L. E. Calliari, J. L. Luescher, T. Della Manna, R. D. Savoldelli, R. A. Cobas, W. S. Coelho, B. Tschiedel, A. J. Ramos, R. M. Fonseca, N. B. C. Araujo, H. G. Almeida, N. H. Melo, D. L. Jezini, and C. A. Negrato. Economic status and clinical care in young type 1 diabetes patients: A nationwide multicenter study in Brazil. Acta Diabetol. 50:743–752, 2013.

  12. 12.

    Internation Diabetes Federation. IDF Diabetes Atlas Seventh, 2019.

  13. 13.

    International Diabetes Federation, I. About diabetes: Type 1 diabetesat https://idf.org/aboutdiabetes/type-1-diabetes.html

  14. 14.

    Jahn, L. G., J. J. Capurro, and B. L. Levy. Comparative dose accuracy of durable and patch insulin infusion pumps. J. Diabetes Sci. Technol. 7:1011–1020, 2013.

    Article  Google Scholar 

  15. 15.

    Johnson, S. R., M. N. Cooper, T. W. Jones, and E. A. Davis. Long-term outcome of insulin pump therapy in children with type 1 diabetes assessed in a large population-based case-control study. Diabetologia 56:2392–2400, 2013.

    CAS  Article  Google Scholar 

  16. 16.

    Juarez, A., K. Maynard, E. Skerrett, E. Molyneux, R. Richards-Kortum, Q. Dube, and Z. Maria Oden. AutoSyP: a low-cost, low-power syringe pump for use in low-resource settings. Am. J. Trop. Med. Hyg. 95:964–969, 2016.

  17. 17.

    Kamecke, U., D. Waldenmaier, C. Haug, R. Ziegler, and G. Freckmann. Establishing methods to determine clinically relevant bolus and basal rate delivery accuracy of insulin pumps. J. Diabetes Sci. Technol. 13:60–67, 2019.

    Article  Google Scholar 

  18. 18.

    Kovatchev, B. P., S. D. Patek, E. A. Ortiz, and M. D. Breton. Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring. Diabetes Technol. Ther. 17:177–186, 2015.

    CAS  Article  Google Scholar 

  19. 19.

    Martins, L. E. G., and T. Gorschek. Requirements engineering for safety-critical systems: a systematic literature review. Inf. Softw. Technol. 75:71–89, 2016.

    Article  Google Scholar 

  20. 20.

    Martins, L. E. G., H. de Faria, L. Vecchete, T. Cunha, T. de Oliveira, D. E. Casarini, and J. A. Colucci. Development of a low-cost insulin infusion pump: Lessons learned from an industry case, 2015. https://doi.org/10.1109/cbms.2015.14

  21. 21.

    Martins, L. E. G., and T. De Oliveira. A case study using a protocol to derive safety functional requirements from fault tree analysis. In 2014 IEEE 22nd Int. Requir. Eng. Conf. RE 2014 - Proc. 412–419, 2014. https://doi.org/10.1109/re.2014.6912292

  22. 22.

    Medtec. IEC 60601-2-24 Infusion pumps - what’s the story?—MEDTEQ, 2018. https://www.medteq.net/article/2018/9/21/iec-60601-2-24-infusion-pumps-whats-the-story

  23. 23.

    Medtronic MiniMed, I. MiniMed TM 640G Guia do utilizador do Sistema. 318, 2015.

  24. 24.

    Nathan, D. M. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37:9–16, 2014.

    CAS  Article  Google Scholar 

  25. 25.

    Paul, P. Clinical management of diabetes in children and adolescents. In: Advanced Nutrition and Dietetics in Diabetes. Chichester: Wiley, 2015, pp. 191–197. https://doi.org/10.1002/9781119121725.ch23

  26. 26.

    Pleus, S., U. Kamecke, D. Waldenmaier, and G. Freckmann. Reporting insulin pump accuracy: trumpet curves according to IEC 60601-2-24 and beyond. J. Diabetes Sci. Technol. 13:592–596, 2019.

    Article  Google Scholar 

  27. 27.

    Pollard, D. J., A. Brennan, S. Dixon, N. Waugh, J. Elliott, S. Heller, E. Lee, M. Campbell, H. Basarir, and D. White. Cost-effectiveness of insulin pumps compared with multiple daily injections both provided with structured education for adults with type 1 diabetes: a health economic analysis of the Relative Effectiveness of Pumps over Structured Education (REPOSE) rando. BMJ Open 8:e016766, 2018.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Reichmuth, A., S. Wunderli, M. Weber, and V. R. Meyer. The uncertainty of weighing data obtained with electronic analytical balances. Microchim. Acta 148:133–141, 2004.

    CAS  Article  Google Scholar 

  29. 29.

    Roche Diagnostics, G. Accu-Chek spirit combo. Germany: Mannheim, 2012.

    Google Scholar 

  30. 30.

    Roze, S., J. Smith-Palmer, W. Valentine, S. Portu, K. Nørgaard, and J. C. Pickup. Cost-effectiveness of continuous subcutaneous insulin infusion versus multiple daily injections of insulin in Type 1 diabetes: a systematic review. Diabet. Med. 32:1415–1424, 2015.

    CAS  Article  Google Scholar 

  31. 31.

    Schaschkow, A., C. Mura, S. Dal, A. Langlois, E. Seyfritz, C. Sookhareea, W. Bietiger, C. Peronet, N. Jeandidier, M. Pinget, S. Sigrist, and E. Maillard. Impact of the type of continuous insulin administration on metabolism in a diabetic rat model. J. Diabetes Res. 2016. https://doi.org/10.1155/2016/8310516.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Simmons, K. M. Type 1 diabetes: a predictable disease. World J. Diabetes 6:380, 2015.

    Article  Google Scholar 

  33. 33.

    Sociedade Brasileira de Diabetes, S. Diretrizes SBD: Uso da insulina no tratamento do diabetes mellitus tipo 1. 1:80–88, 2015.

  34. 34.

    Sociedade Brasileira de Diabetes, S. Diretrizes da Sociedade Brasileira de Diabetes 2014-2015. Saf. Sci. 33, 2015.

  35. 35.

    Sociedade Brasileira de Diabetes, S. Atualização sobre hemoglobina glicada (A1C) para avaliação do controle glicêmico e para o dignóstico do diabetes: Aspectos clínicos e laboratoriais. Posicionamento Of. da SBD, SBPC-ML, SBEM e FENAD 2017/2018 1–36, 2018. https://www.diabetes.org.br/publico/images/banners/posicionamento-3-2.pdf

  36. 36.

    Svensson, M., J. W. Eriksson, and G. Dahlquist. Early glycemic control, age at onset, and development of microvascular complications in childhood-onset type 1 diabetes: a population-based study in northern Sweden. Diabetes Care 27:955–962, 2004.

    Article  Google Scholar 

  37. 37.

    Tenório, F., L. Martins, and T. Cunha. Evaluation of a low-cost insulin infusion pump prototype: in vitro preliminary results, 2019. https://doi.org/10.11159/icbes19.128

  38. 38.

    The Diabetes Control and Complications Trial Research Group, D. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329:977–986, 1993.

  39. 39.

    Weissberg-Benchell, J., J. Antisdel-Lomaglio, and R. Seshadri. Insulin pump therapy: a meta-analysis. Diabetes Care 26:1079–1087, 2003.

    Article  Google Scholar 

  40. 40.

    World Health Organization. Diabetes., 2020. https://www.who.int/health-topics/diabetes

  41. 41.

    Ziegler, R., D. Waldenmaier, U. Kamecke, J. Mende, C. Haug, and G. Freckmann. Accuracy assessment of bolus and basal rate delivery of different insulin pump systems used in insulin pump therapy of children and adolescents. Pediatr. Diabetes 21:649–656, 2020.

    CAS  Article  Google Scholar 

  42. 42.

    Zisser, H. Insulin pump (dose-to-dose) accuracy: what does it mean and when is it important? J. Diabetes Sci. Technol. 8:1142–1144, 2014.

    Article  Google Scholar 

  43. 43.

    Zisser, H. C., W. Bevier, E. Dassau, and L. Jovanovic. Siphon effects on continuous subcutaneous insulin infusion pump delivery performance. J. Diabetes Sci. Technol. 4:98–103, 2010.

    Article  Google Scholar 

  44. 44.

    Zisser, H., M. Breton, E. Dassau, K. Markova, W. Bevier, D. Seborg, and B. Kovatchev. Novel methodology to determine the accuracy of the OmniPod insulin pump: a key component of the artificial pancreas system. J. Diabetes Sci. Technol. 5:1509–1518, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES, Finance Code 001) and FAPESP (2010/511904-9).

Funding

This work was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES, Finance Code 001) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant Number 2010/511904-9).

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernanda Silva Tenorio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Joel Stitzel oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tenorio, F.S., Martins, L.E.G. & Cunha, T.S. Accuracy of a Low-Cost Continuous Subcutaneous Insulin Infusion Pump Prototype: In Vitro Study Using Combined Methodologies. Ann Biomed Eng (2021). https://doi.org/10.1007/s10439-020-02721-8

Download citation

Keywords

  • Accuracy
  • Diabetes mellitus type 1
  • Mechanical system
  • Insulin infusion pump
  • Quantitative evaluation