Skip to main content

Advertisement

Log in

Size-Dependent Effective Diffusivity in Healthy Human and Porcine Joint Synovium

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 27 February 2022

This article has been updated

Abstract

Intra-articular drug delivery can be effective in targeting a diseased joint but is hampered by rapid clearance times from the diarthrodial joint. The synovium is a multi-layered tissue that surrounds the diarthrodial joint and governs molecular transport into and out of the joint. No models of drug clearance through synovium exist to quantify diffusivity across solutes, tissue type and disease pathology. We previously have developed a finite element model of synovium as a porous, permeable, fluid-filled tissue and used an inverse method to determine urea’s effective diffusivity (Deff) in de-vitalized synovium explants.22 Here we apply this method to determine Deff from unsteady diffusive transport of model solutes and confirm the role of molecular weight in solute transport. As molecular weight increased, Deff decreased in both human and porcine tissues, with similar behavior across the two species. Unsteady transport was well-described by a single exponential transient decay in concentration, yielding solute half-lives (t1/2) that compared favorably with the Deff determined from the finite element model fit. Determined values for Deff parallel prior observations of size-dependent in vivo drug clearance and provide an intrinsic parameter with greater ability to resolve size-dependence in vitro. Thus, this work forms the basis for understanding the influence of size on drug transport in synovium and can guide future studies to elucidate the role of charge and tissue pathology on the transport of therapeutics in healthy and pathological human synovium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Change history

References

  1. Ateshian, G. A., S. Maas, and J. A. Weiss. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes. J. Biomech. Eng. 135:111001, 2013.

    PubMed  Google Scholar 

  2. Blewis, M. E., B. J. Lao, K. D. Jadin, W. J. McCarty, W. D. Bugbee, G. S. Firestein, R. L. Sah, and B. Bioeng. Semi-permeable membrane retention of synovial fluid lubricants hyaluronan and proteoglycan 4 for a biomimetic bioreactor NIH public access author manuscript. Biotechnol. Bioeng. 106:149–160, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brinkman, H. C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1:27–34, 1949.

    Google Scholar 

  4. Brown, T., U. Laurent, and Fraser. Turnover of hyaluronan in synovial joints: elimination of labelled hyaluronan from the knee joint of the rabbit. Exp. Physiol. 76:125–134, 1991.

    CAS  PubMed  Google Scholar 

  5. Castor, C. W. The microscopic structure of normal human synovial tissue. Arthritis Rheum. 3:140–151, 1960.

    CAS  PubMed  Google Scholar 

  6. Chevalier, X., and F. Kemta-Lepka. Are biologics a treatment option in osteoarthritis? Therapy 2010. https://doi.org/10.2217/thy.10.66.

    Article  Google Scholar 

  7. Chu, C. R., M. Szczodry, and S. Bruno. Animal models for cartilage regeneration and repair, 2010.

  8. Clague, D. S., and R. J. Phillips. Hindered diffusion of spherical macromolecules through dilute fibrous media. Phys. Fluids 8:1720–1731, 1996.

    CAS  Google Scholar 

  9. Coleman, P. J., D. Scott, J. Ray, R. M. Mason, and J. R. Levick. Hyaluronan secretion into the synovial cavity of rabbit knees and comparison with albumin turnover. J. Physiol. 503:645–656, 1997.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cone, S. G., P. B. Warren, and M. B. Fisher. Rise of the pigs: utilization of the porcine model to study musculoskeletal biomechanics and tissue engineering during skeletal growth. Tissue Eng. C 23:763–780, 2017.

    Google Scholar 

  11. DiDomenico, C. D., and L. J. Bonassar. How can 50 years of solute transport data in articular cartilage inform the design of arthritis therapeutics? Osteoarthr. Cartil. 26(11):1438–1446, 2018.

    CAS  Google Scholar 

  12. DiDomenico, C. D., A. Goodearl, A. Yarilina, V. Sun, S. Mitra, A. S. Sterman, and L. J. Bonassar. The Effect of Antibody Size and Mechanical Loading on Solute Diffusion Through the Articular Surface of Cartilage. J. Biomech. Eng. 139:, 2017.

  13. Didomenico, C. D., M. Lintz, and L. J. Bonassar. Molecular transport in articular cartilage—what have we learned from the past 50 years? Nat. Rev. Rheumatol. 14(7):393–403, 2018.

    CAS  PubMed  Google Scholar 

  14. Doan, T. N., F. C. Bernard, J. M. McKinney, J. B. Dixon, and N. J. Willett. Endothelin-1 inhibits size dependent lymphatic clearance of PEG-based conjugates after intra-articular injection into the rat knee. Acta Biomater. 93:270–281, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Elliott, M., R. Maini, M. Feldmann, J. Kalden, C. Antoni, J. Smolen, B. Leeb, F. Breedveld, J. Macfarlane, J. Bijl, and J. Woody. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet 344:1105–1110, 1994.

    CAS  PubMed  Google Scholar 

  16. Evans, C. H., V. B. Kraus, and L. A. Setton. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 10:11–22, 2014.

    CAS  PubMed  Google Scholar 

  17. Fetter, N. L., H. A. Leddy, F. Guilak, and J. A. Nunley. Composition and transport properties of human ankle and knee cartilage. 24:211–219, 2006.

    Google Scholar 

  18. Gaffney, K., R. B. Williams, V. A. Jolliffe, and D. R. Blake. Intra-articular pressure changes in rheumatoid and normal peripheral joints. Ann. Rheum. Dis. 54:670–673, 1995.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gardiner, B., D. Smith, P. Pivonka, A. Grodzinsky, E. Frank, and L. Zhang. Solute transport in cartilage undergoing cyclic deformation. Comput. Methods Biomech. Biomed. Engin. 10:265–278, 2007.

    PubMed  Google Scholar 

  20. Genovese, M. C., J. M. Bathon, R. M. Fleischmann, L. W. Moreland, R. W. Martin, J. B. Whitmore, W. H. Tsuji, and J. A. Leff. Longterm safety, efficacy, and radiographic outcome with etanercept treatment in patients with early rheumatoid arthritis. J. Rheumatol. 32:1232–1242, 2005.

    CAS  PubMed  Google Scholar 

  21. Gerwin, N., C. Hops, and A. Lucke. Intraarticular drug delivery in osteoarthritis B. Adv. Drug Deliv. Rev. 2006. https://doi.org/10.1016/j.addr.2006.01.018.

    Article  PubMed  Google Scholar 

  22. Guang, Y., T. M. McGrath, N. R. Klug, R. J. Nims, C.-C. Shih, P. O. Bayguinov, F. Guilak, C. T. N. Pham, J. A. J. Fitzpatrick, and L. A. Setton. Combined experimental approach and finite element modeling of small molecule transport through joint synovium to measure effective diffusivity. J. Biomech. Eng. 142, 2020.

  23. Guo, R., Q. Zhou, S. T. Proulx, R. Wood, R. C. Ji, C. T. Ritchlin, B. Pytowski, Z. Zhu, Y. J. Wang, E. M. Schwarz, and L. Xing. Inhibition of lymphangiogenesis and lymphatic drainage via vascular endothelial growth factor receptor 3 blockade increases the severity of inflammation in a mouse model of chronic inflammatory arthritis. Arthritis Rheum. 60:2666–2676, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Habib, G. S., W. Saliba, and M. Nashashibi. Local effects of intra-articular corticosteroids. Clin. Rheumatol. 29(4):347–356, 2010.

    PubMed  Google Scholar 

  25. Jayson, M. I., and A. S. Dixon. Intra-articular pressure in rheumatoid arthritis of the knee. 3. Pressure changes during joint use. Ann. Rheum. Dis. 29:401–408, 1970.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jones, I. A., R. Togashi, M. L. Wilson, N. Heckmann, and C. T. Vangsness. Intra-articular treatment options for knee osteoarthritis. Nat. Rev. Rheumatol. 15:77–90, 2019.

    PubMed  PubMed Central  Google Scholar 

  27. Kiener, H. P., G. F. M. Watts, Y. Cui, J. Wright, T. S. Thornhill, M. Sköld, S. M. Behar, B. Niederreiter, J. Lu, M. Cernadas, A. J. Coyle, G. P. Sims, J. Smolen, M. L. Warman, M. B. Brenner, and D. M. Lee. Synovial fibroblasts self-direct multicellular lining architecture and synthetic function in three-dimensional organ culture. Arthritis Rheum. 62:742–752, 2010.

    CAS  PubMed  Google Scholar 

  28. Kim, S. R., M. J. Ho, E. Lee, J. W. Lee, Y. W. Choi, and M. J. Kang. Cationic PLGA/eudragit RL nanoparticles for increasing retention time in synovial cavity after intra-articular injection in knee joint. Int. J. Nanomedicine 10:5263–5271, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Larsen, C., J. Østergaard, S. W. Larsen, H. Jensen, S. Jacobsen, C. Lindegaard, and P. H. Andersen. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J. Pharm. Sci. 97:4622–4654, 2008.

    CAS  PubMed  Google Scholar 

  30. Leddy, H. A., and F. Guilak. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann. Biomed. Eng. 31:753–760, 2003.

    PubMed  Google Scholar 

  31. Leddy, H. A., M. A. Haider, and F. Guilak. Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. Biophys. J. 91:311–316, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Levick, J. R. An investigation into the validity of subatmospheric pressure recordings from synovial fluid and their dependence on joint angle. J. Physiol. 289:55–67, 1979.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Levick, J. R., and J. N. McDonald. Synovial capillary distribution in relation to altered pressure and permeability in knees of anaesthetized rabbits. J. Physiol. 419:477–492, 1989.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Levick, J. R., and J. N. McDonald. Fluid movement across synovium in healthy joints: role of synovial fluid macromolecules. Ann. Rheum. Dis. 54:417–423, 1995.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang, Q., Y. Ju, Y. Chen, W. Wang, J. Li, L. Zhang, H. Xu, R. W. Wood, E. M. Schwarz, B. F. Boyce, Y. Wang, and L. Xing. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice. Arthritis Res. Ther. 18:1–14, 2016.

    PubMed  PubMed Central  Google Scholar 

  36. Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134:011005, 2012.

    PubMed  Google Scholar 

  37. Maroudas, A. Distribution and diffusion of solutes in articular cartilage. Biophys. J. 10:365–379, 1970.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Miller, C. C., and J. Walker. The Stokes-Einstein law for diffusion in solution. Proc. R. Soc. Lond. A 106:724–749, 1924.

    CAS  Google Scholar 

  39. Mills, M. L., B. R. Rush, G. S. Jean, E. M. Gaughan, D. Mosier, E. Gibson, and L. Freeman. Determination of synovial fluid and serum concentrations, and morphologic effects of intraarticular ceftiofur sodium in horses. Vet. Surg. 29:398–406, 2000.

    CAS  PubMed  Google Scholar 

  40. Moré, J. J. The Levenberg-Marquardt Algorithm: Implementation and Theory. Berlin: Springer, pp. 105–116, 1978. https://doi.org/10.1007/BFb0067700.

    Book  Google Scholar 

  41. Mwangi, T. K., I. M. Berke, E. H. Nieves, R. D. Bell, S. B. Adams, and L. A. Setton. Intra-articular clearance of labeled dextrans from naive and arthritic rat knee joints. J. Control. Release 283:76–83, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mwangi, T. K., R. D. Bowles, D. M. Tainter, R. D. Bell, D. L. Kaplan, and L. A. Setton. Synthesis and characterization of silk fibroin microparticles for intra-articular drug delivery. Int. J. Pharm. 485:7–14, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Owen, S., H. Francis, and M. Roberts. Disappearance kinetics of solutes from synovial fluid after intra- articular injection. Br. J. Clin. Pharmacol. 38:349–355, 1994.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Page-Thomas, D. P., D. Bard, B. King, and J. T. Dingle. Clearance of proteoglycan from joint cavities. Ann. Rheum. Dis. 46:934–937, 1987.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Partain, B. D., M. Unni, C. Rinaldi, and K. D. Allen. The clearance and biodistribution of magnetic composite nanoparticles in healthy and osteoarthritic rat knees. J. Control. Release 2020. https://doi.org/10.1016/j.jconrel.2020.01.052.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Phelps, P., A. D. Steele, and D. J. McCarty. Significance of xenon-133 clearance rate from canine and human joints. Arthritis Rheum. 15:360–370, 1972.

    CAS  PubMed  Google Scholar 

  47. Poli, A., D. Scott, K. Bertin, G. Miserocchi, R. M. Mason, and J. R. Levick. Influence of actin cytoskeleton on intra-articular and interstitial fluid pressures in synovial joints. Microvasc. Res. 62:293–305, 2001.

    CAS  PubMed  Google Scholar 

  48. Renkin, E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38:225–243, 1954.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ritter, S. Y., R. Subbaiah, G. Bebek, J. Crish, C. R. Scanzello, B. Krastins, D. Sarracino, M. F. Lopez, M. K. Crow, T. Aigner, M. B. Goldring, S. R. Goldring, D. M. Lee, R. Gobezie, and A. O. Aliprantis. Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues. Arthritis Rheum. 65:981–992, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Scholer, J. F., P. R. Lee, and H. F. Polley. The absorption of heavy water and radioactive sodium from the knee joint of normal persons and patients with rheumatoid arthritis. Arthritis Rheum. 2:426–432, 1959.

    CAS  Google Scholar 

  51. Simkin, P. A., and R. S. Benedict. Iodide and albumin kinetics in normal canine wrists and knees. Arthritis Rheum. 33:73–79, 1990.

    CAS  PubMed  Google Scholar 

  52. Smith, M. D., and M. D. Smith. The normal synovium. Open Rheumatol. J. 5:100–106, 2011.

    PubMed  PubMed Central  Google Scholar 

  53. Stefani, R. M., S. S. Halder, E. G. Estell, A. J. Lee, A. M. Silverstein, E. Sobczak, N. O. Chahine, G. A. Ateshian, R. P. Shah, and C. T. Hung. A functional tissue-engineered synovium model to study osteoarthritis progression and treatment. Tissue Eng. A 25:538–553, 2019.

    CAS  Google Scholar 

  54. Sterner, B., M. Harms, S. Wöll, M. Weigandt, M. Windbergs, and C. M. Lehr. The effect of polymer size and charge of molecules on permeation through synovial membrane and accumulation in hyaline articular cartilage. Eur. J. Pharm. Biopharm. 101:126–136, 2016.

    CAS  PubMed  Google Scholar 

  55. Torzilli, P. A., D. A. Grande, and J. M. Arduino. Diffusive properties of immature articular cartilage. J. Biomed. Mater. Res. 40:132–138, 1998.

    CAS  PubMed  Google Scholar 

  56. Vela, F.-J. J., F.-M. M. Sánchez-Margallo, R. Blázquez, V. Álvarez, R. Tarazona, M. T. Mangas-Ballester, A. Cristo, and J. G. Casado. Evaluation of antigen-induced synovitis in a porcine model: immunological, arthroscopic and kinetic studies. BMC Vet. Res. 13:93, 2017.

    PubMed  PubMed Central  Google Scholar 

  57. Wallis, W. J., P. A. Simkin, W. B. Nelp, and D. M. Foster. Intraarticular volume and clearance in human synovial effusions. Arthritis Rheum. 28:441–449, 1985.

    CAS  PubMed  Google Scholar 

  58. Watkins-Castillo, S. The Burden of Musculoskeletal Diseases in the United States (BMUS). 2014.

  59. Xu, H., J. Edwards, S. Banerji, R. Prevo, D. G. Jackson, and N. A. Athanasou. Distribution of lymphatic vessels in normal and arthritic human synovial tissues. Ann. Rheum. Dis. 62:1227–1229, 2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, L., B. S. Gardiner, D. W. Smith, P. Pivonka, and A. Grodzinsky. The effect of cyclic deformation and solute binding on solute transport in cartilage. Arch. Biochem. Biophys. 457:47–56, 2007.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael Talcott, DVM, in the Division of Comparative Medicine, Washington University School of Medicine in St. Louis, for providing porcine samples. We additionally thank the Mid-America Transplant Center for providing human samples. Work was performed with support from The National Institutes of Health (R01 AR070975, R61AR076820), Washington University Center for Cellular Imaging (WUCCI) funded by Washington University School of Medicine, the Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital (CDI-CORE-2015-505 and CDI-CORE-2019-813), The Foundation for Barnes-Jewish Hospital (3770 and 4642), the Washington University Rheumatic Diseases Resource-based Research Center (RDRRC) (NIH P30AR073752), and the Washington University Musculoskeletal Research Center (NIH P30 AR074992). Use of the open-source software FEBio is supported in part by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori A. Setton.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guang, Y., Davis, A.L., McGrath, T.M. et al. Size-Dependent Effective Diffusivity in Healthy Human and Porcine Joint Synovium. Ann Biomed Eng 49, 1245–1256 (2021). https://doi.org/10.1007/s10439-020-02717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02717-4

Keywords

Navigation