Patient-Specific Bicuspid Aortic Valve Biomechanics: A Magnetic Resonance Imaging Integrated Fluid–Structure Interaction Approach

Abstract

Congenital bicuspid aortic valve (BAV) consists of two fused cusps and represents a major risk factor for calcific valvular stenosis. Herein, a fully coupled fluid–structure interaction (FSI) BAV model was developed from patient-specific magnetic resonance imaging (MRI) and compared against in vivo 4-dimensional flow MRI (4D Flow). FSI simulation compared well with 4D Flow, confirming direction and magnitude of the flow jet impinging onto the aortic wall as well as location and extension of secondary flows and vortices developing at systole: the systolic flow jet originating from an elliptical 1.6 cm2 orifice reached a peak velocity of 252.2 cm/s, 0.6% lower than 4D Flow, progressively impinging on the ascending aorta convexity. The FSI model predicted a peak flow rate of 22.4 L/min, 6.7% higher than 4D Flow, and provided BAV leaflets mechanical and flow-induced shear stresses, not directly attainable from MRI. At systole, the ventricular side of the non-fused leaflet revealed the highest wall shear stress (WSS) average magnitude, up to 14.6 Pa along the free margin, with WSS progressively decreasing towards the belly. During diastole, the aortic side of the fused leaflet exhibited the highest diastolic maximum principal stress, up to 322 kPa within the attachment region. Systematic comparison with ground-truth non-invasive MRI can improve the computational model ability to reproduce native BAV hemodynamics and biomechanical response more realistically, and shed light on their role in BAV patients’ risk for developing complications; this approach may further contribute to the validation of advanced FSI simulations designed to assess BAV biomechanics.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    Aggarwal, A., G. Ferrari, E. Joyce, M. J. Daniels, R. Sainger, J. H. Gorman, 3rd, R. Gorman, and M. S. Sacks. Architectural trends in the human normal and bicuspid aortic valve leaflet and its relevance to valve disease. Ann. Biomed. Eng. 42:986–998, 2014.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Aggarwal, A., and M. S. Sacks. An inverse modeling approach for semilunar heart valve leaflet mechanics: Exploitation of tissue structure. Biomech. Model. Mechanobiol. 15:909–932, 2016.

    PubMed  Google Scholar 

  3. 3.

    Baumgartner, H., J. Hung, J. Bermejo, J. B. Chambers, T. Edvardsen, S. Goldstein, P. Lancellotti, M. LeFevre, F. Miller, Jr, and C. M. Otto. Recommendations on the echocardiographic assessment of aortic valve stenosis: A focused update from the european association of cardiovascular imaging and the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 30:372–392, 2017.

    PubMed  Google Scholar 

  4. 4.

    Bissell, M. M., A. T. Hess, L. Biasiolli, S. J. Glaze, M. Loudon, and A. Pitcher. Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ. Cardiovasc. Imaging 6:499–507, 2013.

    PubMed  Google Scholar 

  5. 5.

    Bollache, E., P. van Ooij, A. Powell, J. Carr, M. Markl, and A. J. Barker. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics. Int. J. Cardiovasc. Imaging 32:1529–1541, 2016.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Callahan, S., N. S. Singam, M. Kendrick, M. J. Negahdar, H. Wang, M. F. Stoddard, and A. A. Amini. Dual-venc acquisition for 4D flow MRI in aortic stenosis with spiral readouts. J. Magn. Reson. Imaging 2019. https://doi.org/10.1002/jmri.27004.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Cao, K., and P. Sucosky. Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets. Int. J. Num. Methods Biomed. Eng. 33:e02798, 2017.

    Google Scholar 

  8. 8.

    Cavalcante, J. L., J. A. Lima, A. Redheuil, and M. H. Al-Mallah. Aortic stiffness: Current understanding and future directions. J. Am. Coll. Cardiol. 57:1511–1522, 2011.

    PubMed  Google Scholar 

  9. 9.

    Chandra, S., N. M. Rajamannan, and P. Sucosky. Computational assessment of bicuspid aortic valve wall-shear stress: Implications for calcific aortic valve disease. Biomech. Model. Mechanobiol. 11:1085–1096, 2012.

    PubMed  Google Scholar 

  10. 10.

    Cibis, M., W. V. Potters, F. J. Gijsen, H. Marquering, P. vanOoij, E. vanBavel, J. J. Wentzel, and A. J. Nederveen. The effect of spatial and temporal resolution of cine phase contrast MRI on wall shear stress and oscillatory shear index assessment. Plos One 11:e0163316, 2016.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Conti, C. A., A. Della Corte, E. Votta, L. Del Viscovo, C. Bancone, L. S. De Santo, and A. Redaelli. Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J. Thorac. Cardiovasc. Surg. 140:890–896, 2010.

    PubMed  Google Scholar 

  12. 12.

    Conti, C. A., A. Della Corte, E. Votta, L. Del Viscovo, C. Bancone, L. S. DeSanto, and A. Redaelli. Biomechanical implications of the congenital bicuspid aortic valve: A finite element study of aortic root function from in vivo data. J. Thorac. Cardiovasc. Surg. 140:890–896, 2010.

    PubMed  Google Scholar 

  13. 13.

    Conti, C. A., E. Votta, A. Della Corte, L. Del Viscovo, C. Bancone, M. Cotrufo, and A. Redaelli. Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med. Eng. Phys. 32:212–221, 2010.

    PubMed  Google Scholar 

  14. 14.

    Craven, B. A., E. G. Paterson, G. S. Settles, and M. J. Lawson. Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow. J. Biomech. Eng. 131:091002, 2009.

    PubMed  Google Scholar 

  15. 15.

    Deck, J. D., M. J. Thubrikar, P. J. Schneider, and S. P. Nolan. Structure, stress, and tissue repair in aortic valve leaflets. Cardiovasc. Res. 22:7–16, 1988.

    CAS  PubMed  Google Scholar 

  16. 16.

    Dodge, J. T., B. G. Brown, E. L. Bolson, and H. T. Dodge. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86:232–246, 1992.

    PubMed  Google Scholar 

  17. 17.

    Dowling, C., S. Firoozi, and S. J. Brecker. First-in-human experience with patient-specific computer simulation of TAVR in bicuspid aortic valve morphology. JACC Cardiovasc. Interv. 13:184–192, 2020.

    PubMed  Google Scholar 

  18. 18.

    Dyverfeldt, P., M. Bissell, A. J. Barker, A. F. Bolger, C.-J. Carlhäll, T. Ebbers, C. J. Francios, A. Frydrychowicz, J. Geiger, D. Giese, M. D. Hope, P. J. Kilner, S. Kozerke, S. Myerson, S. Neubauer, O. Wieben, and M. Markl. 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 17:72, 2015.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Fratz, S., T. Chung, G. F. Greil, M. M. Samyn, A. M. Taylor, E. R. Valsangiacomo Buechel, S. J. Yoo, and A. J. Powell. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J. Cardiovasc. Magn. Reson. 15:51, 2013.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Garcia, J., O. R. Marrufo, A. O. Rodriguez, E. Larose, P. Pibarot, and L. Kadem. Cardiovascular magnetic resonance evaluation of aortic stenosis severity using single plane measurement of effective orifice area. J. Cardiovasc. Magn. Reson. 14:23, 2012.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ghosh, R. P., G. Marom, M. Bianchi, K. D’Souza, W. Zietak, and D. Bluestein. Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid-structure interaction analysis. Biomech. Model Mechanobiol. 2020. https://doi.org/10.1007/s10237-020-01304-9.

    Article  PubMed  Google Scholar 

  22. 22.

    Gilmanov, A., and F. Sotiropoulos. Comparative hemodynamics in an aorta with bicuspid and trileaflet valves. Theoret. Comput. Fluid Dyn. 30:67–85, 2016.

    CAS  Google Scholar 

  23. 23.

    Grande, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Stress variations in the human aortic root and valve: The role of anatomic asymmetry. Ann. Biomed. Eng. 26:534–545, 1998.

    CAS  PubMed  Google Scholar 

  24. 24.

    Guzzardi, D. G., A. J. Barker, P. van Ooij, S. C. Malaisrie, J. J. Puthumana, D. D. Belke, H. E. Mewhort, D. A. Svystonyuk, S. Kang, S. Verma, J. Collins, J. Carr, R. O. Bonow, M. Markl, J. D. Thomas, P. M. McCarthy, and P. W. Fedak. Valve-related hemodynamics mediate human bicuspid aortopathy: Insights from wall shear stress mapping. J. Am. Coll. Cardiol. 66:892–900, 2015.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Halevi, R., A. Hamdan, G. Marom, K. Lavon, S. Ben-Zekry, E. Raanani, D. Bluestein, and R. Haj-Ali. Fluid–structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med. Biol. Eng. Comput. 54:1683–1694, 2016.

    PubMed  Google Scholar 

  26. 26.

    Hutcheson, J. D., E. Aikawa, and W. D. Merryman. Potential drug targets for calcific aortic valve disease. Nat Rev Cardiol 11:218–231, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Jermihov, P. N., L. Jia, M. S. Sacks, R. C. Gorman, J. H. Gorman, 3rd, and K. B. Chandran. Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc. Eng. Technol. 2:48–56, 2011.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kim, H. J., I. E. Vignon-Clementel, J. S. Coogan, C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38:3195–3209, 2010.

    CAS  PubMed  Google Scholar 

  29. 29.

    Kong, W. K., V. Delgado, K. K. Poh, M. V. Regeer, A. C. Ng, L. McCormack, T. C. Yeo, M. Shanks, S. Parent, R. Enache, B. A. Popescu, M. Liang, J. W. Yip, L. C. Ma, V. Kamperidis, P. J. van Rosendael, E. J. vander Velde, N. Ajmone Marsan, and J. J. Bax. Prognostic implications of raphe in bicuspid aortic valve anatomy. JAMA Cardiol. 2:285–292, 2017.

    PubMed  Google Scholar 

  30. 30.

    Lavon, K., R. Halevi, G. Marom, S. BenZekry, A. Hamdan, H. JoachimSchäfers, E. Raanani, and R. Haj-Ali. Fluid–structure interaction models of bicuspid aortic valves: The effects of nonfused cusp angles. J. Biomech. Eng. 2018. https://doi.org/10.1115/1.4038329.

    Article  PubMed  Google Scholar 

  31. 31.

    Leopold, J. A. Cellular mechanisms of aortic valve calcification. Circ. Cardiovasc. Interv. 5:605–614, 2012.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Marom, G., H.-S. Kim, M. Rosenfeld, E. Raanani, and R. Haj-Ali. Fully coupled fluid–structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med. Biol. Eng. Comput. 51:839–848, 2013.

    PubMed  Google Scholar 

  33. 33.

    Martin, C., and W. Sun. Biomechanical characterization of aortic valve tissue in humans and common animal models. J. Biomed. Mater. Res. A 100:1591–1599, 2012.

    PubMed  Google Scholar 

  34. 34.

    Michelena, H. I., A. D. Khanna, D. Mahoney, E. Margaryan, Y. Topilsky, R. M. Suri, B. Eidem, W. D. Edwards, T. M. Sundt, III, and M. Enriquez-Sarano. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA 306:1104, 2011.

    CAS  PubMed  Google Scholar 

  35. 35.

    Miyazaki, S., K. Itatani, T. Furusawa, T. Nishino, M. Sugiyama, Y. Takehara, and S. Yasukochi. Validation of numerical simulation methods in aortic arch using 4D flow MRI. Heart Vessels 32:1032–1044, 2017.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Moore, B. L., and L. P. Dasi. Coronary flow impacts aortic leaflet mechanics and aortic sinus hemodynamics. Ann. Biomed. Eng. 43:2231–2241, 2015.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Nayak, K. S., J. F. Nielsen, M. A. Bernstein, M. Markl, P. D. Gatehouse, R. M. Botnar, D. Saloner, C. Lorenz, H. Wen, B. S. Hu, and F. H. Epstein. Cardiovascular magnetic resonance phase contrast imaging. J. Cardiovasc. Magn. Reson. 17:71, 2015.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Piatti, F., F. Sturla, M. M. Bissell, S. Pirola, M. Lombardi, I. Nesteruk, A. DellaCorte, A. C. L. Redaelli, and E. Votta. 4D flow analysis of BAV-related fluid-dynamic alterations: Evidences of wall shear stress alterations in absence of clinically-relevant aortic anatomical remodeling. Front. Physiol. 8:441, 2017.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Rodríguez-Palomares, J. F., L. Dux-Santoy, A. Guala, R. Kale, G. Maldonado, G. Teixidó-Turà, L. Galian, M. Huguet, F. Valente, L. Gutiérrez, T. González-Alujas, K. M. Johnson, O. Wieben, D. García-Dorado, and A. Evangelista. Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease. J. Cardiovasc. Magn. Reson. 20:28, 2018.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Sabet, H. Y., W. D. Edwards, H. D. Tazelaar, and R. C. Daly. Congenitally bicuspid aortic valves: A surgical pathology study of 542 cases (1991 through 1996) and a literature review of 2,715 additional cases. Mayo Clin. Proc. 74:14–26, 1999.

    CAS  PubMed  Google Scholar 

  41. 41.

    Saikrishnan, N., C. H. Yap, N. C. Milligan, N. V. Vasilyev, and A. P. Yoganathan. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann. Biomed. Eng. 40:1760–1775, 2012.

    PubMed  Google Scholar 

  42. 42.

    Saitta, S., S. Pirola, F. Piatti, E. Votta, F. Lucherini, F. Pluchinotta, M. Carminati, M. Lombardi, C. Geppert, F. Cuomo, C. A. Figueroa, X. Y. Xu, and A. Redaelli. Evaluation of 4D flow MRI-based non-invasive pressure assessment in aortic coarctations. J. Biomech. 94:13–21, 2019.

    PubMed  Google Scholar 

  43. 43.

    Schaefer, B. M., M. B. Lewin, K. K. Stout, E. Gill, A. Prueitt, P. H. Byers, and C. M. Otto. The bicuspid aortic valve: An integrated phenotypic classification of leaflet morphology and aortic root shape. Heart 94:1634–1638, 2008.

    CAS  PubMed  Google Scholar 

  44. 44.

    Sievers, H.-H., and C. Schmidtke. A classification system for the bicuspid aortic valve from 304 surgical specimens. J. Thorac. Cardiovasc. Surg. 133:1226–1233, 2007.

    PubMed  Google Scholar 

  45. 45.

    Sodhani, D., S. Reese, A. Aksenov, S. Soganci, S. Jockenhovel, P. Mela, and S. E. Stapleton. Fluid-structure interaction simulation of artificial textile reinforced aortic heart valve: Validation with an in-vitro test. J. Biomech. 78:52–69, 2018.

    PubMed  Google Scholar 

  46. 46.

    Stalder, A. F., A. Frydrychowicz, M. F. Russe, J. G. Korvink, J. Hennig, K. Li, and M. Markl. Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. J. Magn. Reson. Imaging 33:839–846, 2011.

    PubMed  Google Scholar 

  47. 47.

    Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29:254–260, 2009.

    CAS  PubMed  Google Scholar 

  48. 48.

    Sun, L., S. Chandra, and P. Sucosky. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS ONE 7:e48843, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Sun, L., N. M. Rajamannan, and P. Sucosky. Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. PLoS ONE 8:e84433, 2013.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Verma, S., and S. C. Siu. Aortic dilatation in patients with bicuspid aortic valve. N. Engl. J. Med. 370:1920–1929, 2014.

    CAS  PubMed  Google Scholar 

  51. 51.

    Votta, E., M. Presicce, A. DellaCorte, S. Dellegrottaglie, C. Bancone, F. Sturla, and A. Redaelli. A novel approach to the quantification of aortic root in vivo structural mechanics. Int. J. Num. Methods Biomed. Eng. 33:2849, 2017.

    Google Scholar 

  52. 52.

    Yap, C. H., N. Saikrishnan, G. Tamilselvan, N. Vasilyev, and A. P. Yoganathan. The congenital bicuspid aortic valve can experience high-frequency unsteady shear stresses on its leaflet surface. Am. J. Physiol. 303:721–731, 2012.

    Google Scholar 

Download references

Acknowledgments

Simulia and Capvidia are in an academic partnership with Dr. Bluestein. This project was supported by NIH-NIBIB-BRPU01EB026414 (DB). IRCCS Policlinico San Donato is a clinical research hospital partially funded by the Italian Ministry of Health.

Conflict of interest

Dr. Bluestein have stock ownership in PolyNova Cardiovascular Inc. All other authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danny Bluestein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Lakshmi Prasad Dasi oversaw the review of this article

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (AVI 16201 kb)

Supplementary material 1 (PDF 1550 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emendi, M., Sturla, F., Ghosh, R.P. et al. Patient-Specific Bicuspid Aortic Valve Biomechanics: A Magnetic Resonance Imaging Integrated Fluid–Structure Interaction Approach. Ann Biomed Eng 49, 627–641 (2021). https://doi.org/10.1007/s10439-020-02571-4

Download citation

Keywords

  • Bicuspid aortic valve
  • Fluid–structure interaction
  • Patient-specific model
  • Magnetic resonance imaging
  • 4D flow