Review of Robotic Needle Guide Systems for Percutaneous Intervention

A Correction to this article is available

This article has been updated


Numerous research groups in the past have designed and developed robotic needle guide systems that improve the targeting accuracy and precision by either providing a physical guidance for manual insertion or enabling a complete automated intervention. Here we review systems that have been reported in the last 11 years and limited to straight line needle interventions. Most systems fall under the category of image guided systems as they either use magnetic resonance image, computed tomography, ultrasound or a combination of these modalities for real time image feedback of the intervention path being followed. Actuation and control technology along with materials used for construction are the main aspects that differentiate these systems from each other and have been reviewed here. Image compatibility test details and results are also reviewed as they are used to ensure proper functioning of these systems under the respective imaging environments. We have also reviewed needle guide systems which either don’t use any image feedback or have not reported any but provide physical guidance. Throughout this paper, we provide a comprehensive review of the technological aspects and trends in the field of robotic, straight line, needle guide intervention systems.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Change history

  • 17 July 2020

    Sentences under the sections ���Needle Guide Systems Based on��Imaging Modalities��� and ���Image Compatibility for Needle Guide Systems��� contained incorrect data referred from other articles.


  1. 1.

    Arnolli, M. M., M. Buijze, M. Franken, K. P. de Jong, D. M. Brouwer, and I. A. M. J. Broeders. System for CT-guided needle placement in the thorax and abdomen: a design for clinical acceptability, applicability and usability. Int. J. Med. Robot. Comput. Assist. Surg. 14:e1877, 2018.

    Google Scholar 

  2. 2.

    Barbe L., B. Bayle, J. Gangloff, M. de Mathelin, and O. Piccin. Design and evaluation of a linear haptic device. In: Proceedings 2007 IEEE International Conference on Robotics and Automation IEEE, 2007, pp. 485–490.

  3. 3.

    Bassan, H. S., R. V. Patel, and M. Moallem. A novel manipulator for percutaneous needle insertion: design and experimentation. IEEE/ASME Trans. Mechatron. 14:746–761, 2009.

    Google Scholar 

  4. 4.

    Boctor, E. M., M. A. Choti, E. C. Burdette, and R. J. Webster. Three-dimensional ultrasound-guided robotic needle placement: an experimental evaluation. Int. J. Med. Robot. Comput. Assist. Surg. 4:180–191, 2008.

    Google Scholar 

  5. 5.

    Chan, K. G., T. Fielding, and M. Anvari. An image-guided automated robot for MRI breast biopsy. Int. J. Med. Robot. Comput. Assist. Surg. 12:461–477, 2016.

    Google Scholar 

  6. 6.

    Chen, L., T. Paetz, V. Dicken, S. Krass, J. A. Issawi, D. Ojdanic, S. Krass, G. Tigelaar, J. Sabisch, A. V. Poelgeest, and J. Schaechtele. Design of a dedicated five degree-of-freedom magnetic resonance imaging compatible robot for image guided prostate biopsy. J. Med. Devices 9:015002, 2015.

    Google Scholar 

  7. 7.

    Chen, X., et al. Design of an instrument guide for MRI-guided percutaneous interventions. Trans. ASME-W-J. Med. Devices 5(2):027527, 2011.

    Google Scholar 

  8. 8.

    Christoforou, E. G., I. Seimenis, E. Andreou, E. Eracleous, and N. V. Tsekos. A novel, general-purpose, MR-compatible, manually actuated robotic manipulation system for minimally invasive interventions under direct MRI guidance. Int. J. Med. Robot. Comput. Assist. Surg. 10:22–34, 2014.

    Google Scholar 

  9. 9.

    Chung J., H.-J. Cha, B.-J. Yi, and W. K. Kim. Implementation of a 4-DOF parallel mechanism as a needle insertion device. In: 2010 IEEE International Conference on Robotics and Automation. IEEE, 2010, pp. 662–668.

  10. 10.

    De Lorenzo, D., Y. Koseki, E. De Momi, K. Chinzei, and A. M. Okamura. Coaxial needle insertion assistant with enhanced force feedback. IEEE Trans. Biomed. Eng. 60:379–389, 2013.

    PubMed  Google Scholar 

  11. 11.

    De Lorenzo D., R. Manganelli, I. Dyagilev, A. Formaglio, E. De Momi, D. Prattichizzo, M. Shoham, and G. Ferrigno. Miniaturized rigid probe driver with haptic loop control for neurosurgical interventions. In: 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, 2010, pp. 522–527.

  12. 12.

    DiMaio, S. P., E. Samset, G. Fischer, I. Iordachita, G. Fichtinger, F. Jolesz, and C. M. Tempany. Dynamic MRI scan plane control for passive tracking of instruments and devices. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2007, edited by N. Ayache, S. Ourselin, and A. Maeder. Berlin: Springer, 2007, pp. 50–58.

    Google Scholar 

  13. 13.

    Duan, X., L. Gao, Y. Wang, J. Li, H. Li, and Y. Guo. Modelling and experiment based on a navigation system for a cranio-maxillofacial surgical robot. J. Healthc. Eng. 1–14:2018, 2018.

    Google Scholar 

  14. 14.

    Elhawary, H., Z. T. H. Tse, M. Rea, A. Zivanovic, B. Davies, C. Besant, N. de Souza, D. McRobbie, I. Young, and M. Lamperth. Robotic system for transrectal biopsy of the prostate: real-time guidance under MRI. IEEE Eng. Med. Biol. Mag. 29:78–86, 2010.

    PubMed  Google Scholar 

  15. 15.

    Elhawary, H., A. Zivanovic, M. Rea, B. L. Davies, C. Besant, I. Young, and M. U. Lamperth. A modular approach to MRI-compatible robotics. IEEE Eng. Med. Biol. Mag. 27:35–41, 2008.

    PubMed  Google Scholar 

  16. 16.

    Eslami, S., W. Shang, G. Li, N. Patel, G. S. Fischer, J. Tokuda, N. Hata, C. M. Tempany, and I. Iordachita. In-bore prostate transperineal interventions with an MRI-guided parallel manipulator: system development and preliminary evaluation. Int. J. Med. Robot. Comput. Assist. Surg. 12:199–213, 2016.

    Google Scholar 

  17. 17.

    Fischer, G. S., I. Iordachita, C. Csoma, J. Tokuda, S. P. DiMaio, C. M. Tempany, N. Hata, and G. Fichtinger. MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Trans. Mechatron. 13:295–305, 2008.

    Google Scholar 

  18. 18.

    Fischer, G. S., A. Krieger, I. Iordachita, C. Csoma, L. L. Whitcomb, and F. Gabor. MRI compatibility of robot actuation techniques—a comparative study. Med. Image Comput. Comput. Assist. Interv. 11:509–517, 2008.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Franco, E., D. Brujic, M. Rea, W. M. Gedroyc, and M. Ristic. Needle-guiding robot for laser ablation of liver tumors under MRI guidance. IEEE/ASME Trans. Mechatron. 21:931–944, 2016.

    Google Scholar 

  20. 20.

    Goldenberg, A. A., J. Trachtenberg, W. Kucharczyk, Y. Yi, M. Haider, L. Ma, R. Weersink, and C. Raoufi. Robotic system for closed-bore MRI-guided prostatic interventions. IEEE/ASME Trans. Mechatron. 13:374–379, 2008.

    Google Scholar 

  21. 21.

    Groenhuis V., F. J. Siepel, J. Veltman, and S. Stramigioli. Design and characterization of Stormram 4: an MRI-compatible robotic system for breast biopsy. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 928–933.

  22. 22.

    Hata, N., S.-E. Song, O. Olubiyi, Y. Arimitsu, K. Fujimoto, T. Kato, K. Tuncali, S. Tani, and J. Tokuda. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer. Med. Phys. 43:843–853, 2016.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Hata, N., J. Tokuda, S. Hurwitz, and S. Morikawa. MRI-compatible manipulator with remote-center-of-motion control. J. Magn. Reson. Imaging 27:1130–1138, 2008.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hiraki, T., T. Kamegawa, T. Matsuno, T. Komaki, J. Sakurai, and S. Kanazawa. Zerobot(R): a remote-controlled robot for needle insertion in CT-guided interventional radiology developed at Okayama University. Acta Med. Okayama 72:539–546, 2018.

    PubMed  Google Scholar 

  25. 25.

    Ho, H. S. S., P. Mohan, E. D. Lim, D. L. Li, J. S. P. Yuen, W. S. Ng, W. K. O. Lau, and C. W. S. Cheng. Robotic ultrasound-guided prostate intervention device: system description and results from phantom studies. Int. J. Med. Robot. Comput. Assist. Surg. 5:51–58, 2009.

    CAS  Google Scholar 

  26. 26.

    Hong Z., C. Yun, L. Zhao, and Y. Wang. Design and optimization analysis of open-MRI compatibile robot for neurosurgery. In: 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008, pp. 1773–1776.

  27. 27.

    Hungr, N., M. Baumann, J.-A. Long, and J. Troccaz. A 3-D ultrasound robotic prostate brachytherapy system with prostate motion tracking. IEEE Trans. Robot. 28:1382–1397, 2012.

    Google Scholar 

  28. 28.

    Hungr, N., I. Bricault, P. Cinquin, and C. Fouard. Design and validation of a CT- and MRI-guided robot for percutaneous needle procedures. IEEE Trans. Robot. 32:973–987, 2016.

    Google Scholar 

  29. 29.

    Hungr N., J. Troccaz, N. Zemiti, and N. Tripodi. Design of an ultrasound-guided robotic brachytherapy needle-insertion system. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009, pp. 250–253.

  30. 30.

    Jiang, S., W. Feng, J. Lou, Z. Yang, J. Liu, and J. Yang. Modelling and control of a five-degrees-of-freedom pneumatically actuated magnetic resonance-compatible robot. Int. J. Med. Robot. Comput. Assist. Surg. 10:170–179, 2014.

    Google Scholar 

  31. 31.

    Jiang, S., J. Lou, Z. Yang, J. Dai, and Y Yu Design. analysis and control of a novel tendon-driven magnetic resonance-guided robotic system for minimally invasive breast surgery. Proc. Inst. Mech. Eng. 229:652–669, 2015.

    Google Scholar 

  32. 32.

    Jiang, S., F. Sun, J. Dai, J. Liu, and Z. Yang. Design and analysis of a tendon-based MRI-compatible surgery robot for transperineal prostate needle placement. Proc. Inst. Mech. Eng. Part C 229:335–348, 2015.

    Google Scholar 

  33. 33.

    Kim, S.-T., Y. Kim, and J. Kim. Design of an MR-compatible biopsy needle manipulator using pull-pull cable transmission. Int. J. Precis. Eng. Manuf. 17:1129–1137, 2016.

    Google Scholar 

  34. 34.

    Kobayashi, Y., J. Hong, R. Hamano, K. Okada, M. G. Fujie, and M. Hashizume. Development of a needle insertion manipulator for central venous catheterization. Int. J. Med. Robot. Comput. Assist. Surg. 8:34–44, 2012.

    Google Scholar 

  35. 35.

    Kobayashi, Y., A. Onishi, H. Watanabe, T. Hoshi, K. Kawamura, M. Hashizume, and M. G. Fujie. Development of an integrated needle insertion system with image guidance and deformation simulation. Comput. Med. Imaging Graph. 34:9–18, 2010.

    PubMed  Google Scholar 

  36. 36.

    Kobler, J.-P., J. Kotlarski, J. Öltjen, S. Baron, and T. Ortmaier. Design and analysis of a head-mounted parallel kinematic device for skull surgery. Int. J. Comput. Assist. Radiol. Surg. 7:137–149, 2012.

    PubMed  Google Scholar 

  37. 37.

    Kokes, R., K. Lister, R. Gullapalli, B. Zhang, A. MacMillan, H. Richard, and J. P. Desai. Towards a teleoperated needle driver robot with haptic feedback for RFA of breast tumors under continuous MRI. Med. Image Anal. 13:445–455, 2009.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Koseki Y., D. De Lorenzo, K. Chinzei, and A. M. Okamura. Coaxial needle insertion assistant for epidural puncture. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011, pp. 2584–2589.

  39. 39.

    Krieger, A., S.-E. Song, N. B. Cho, I. Iordachita, P. Guion, G. Fichtinger, and L. L. Whitcomb. development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans. Mechatron. 18:273–284, 2012.

    Google Scholar 

  40. 40.

    Li, G., H. Su, G. A. Cole, W. Shang, K. Harrington, A. Camilo, J. G. Pilitsis, and G. S. Fischer. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans. Bio-Med. Eng. 62:1077–1088, 2015.

    Google Scholar 

  41. 41.

    Maurin, B., B. Bayle, O. Piccin, J. Gangloff, M. de Mathelin, C. Doignon, P. Zanne, and A. Gangi. A patient-mounted robotic platform for CT-scan guided procedures. IEEE Trans. Biomed. Eng. 55:2417–2425, 2008.

    PubMed  Google Scholar 

  42. 42.

    Melzer, A., B. Gutmann, T. Remmele, R. Wolf, A. Lukoscheck, M. Bock, H. Bardenheuer, and H. Fischer. INNOMOTION for percutaneous image-guided interventions. IEEE Eng. Med. Biol. Mag. 27:66–73, 2008.

    PubMed  Google Scholar 

  43. 43.

    Monfaredi R., R. Seifabadi, I. Iordachita, R. Sze, N. M. Safdar, K. Sharma, S. Fricke, A. Krieger, and K. Cleary. A prototype body-mounted MRI-compatible robot for needle guidance in shoulder arthrography. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, 2014, pp. 40–45.

  44. 44.

    Monfaredi R., R. Sze, N. Safdar, K. Sharma, and K. Cleary. Patient mounted CT and MRI compatible shoulder arthrography robot for needle guidance in pediatric interventional procedures. In: The Hamlyn Symposium on Medical Robotics, 2013, pp. 117–118.

  45. 45.

    Moon Y., J. Won, S. Park, and J. Choi. Improvement of robotic mechanism for automated biopsy. In: 2015 15th International Conference on Control, Automation and Systems (ICCAS) IEEE, 2015, pp. 1508–1511.

  46. 46.

    Muradore, R., P. Fiorini, G. Akgun, D. E. Barkana, M. Bonfe, F. Boriero, A. Caprara, G. De Rossi, R. Dodi, O. J. Elle, F. Ferraguti, L. Gasperotti, R. Gassert, K. Mathiassen, D. Handini, O. Lambercy, L. Li, M. Kruusmaa, A. O. Manurung, G. Meruzzi, H. Q. P. Nguyen, N. Preda, G. Riolfo, A. Ristolainen, A. Sanna, C. Secchi, M. Torsello, and A. E. Yantac. Development of a cognitive robotic system for simple surgical tasks. Int. J. Adv. Robot. Syst. 12:37, 2015.

    Google Scholar 

  47. 47.

    Navarro-Alarcon, D., S. Singh, T. Zhang, H. L. Chung, K. W. Ng, M. K. Chow, and Y. Liu. Developing a compact Robotic needle driver for MRI-guided breast biopsy in tight environments. IEEE Robot. Autom. Lett. 2:1648–1655, 2017.

    Google Scholar 

  48. 48.

    Bebek, Ö., M. J. Hwang, and M. C. Cavusoglu. Design of a parallel robot for needle-based interventions on small animals. IEEE/ASME Trans. Mechatron. 18:62–73, 2013.

    Google Scholar 

  49. 49.

    Orhan S. O., M. C. Yildirim, and O. Bebek. Design and modeling of a parallel robot for ultrasound guided percutaneous needle interventions. In: IECON 2015—41st Annual Conference of the IEEE Industrial Electronics SocietyIEEE, 2015, pp. 005002–005007.

  50. 50.

    Park, S. B., J. G. Kim, K. W. Lim, C. H. Yoon, D. J. Kim, H. S. Kang, and Y. H. Jo. A magnetic resonance image-guided breast needle intervention robot system: overview and design considerations. Int. J. Med. Robot. Comput. Assist. Surg. 12:1319–1331, 2017.

    Google Scholar 

  51. 51.

    Patel N. A., E. Azimi, R. Monfaredi, K. Sharma, K. Cleary, and I. Iordachita. Robotic system for MRI-guided shoulder arthrography: Accuracy evaluation. In: 2018 International Symposium on Medical Robotics (ISMR). IEEE, 2018, pp. 1–6.

  52. 52.

    Patel N. A., J. Yan, D. Levi, R. Monfaredi, K. Cleary, and I. Iordachita. Body-mounted robot for image-guided percutaneous interventions: mechanical design and preliminary accuracy evaluation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 1443–1448.

  53. 53.

    Piccin, O., L. Barbé, B. Bayle, M. De Mathelin, and A. Gangi. A force feedback teleoperated needle insertion device for percutaneous procedures. Int. J. Robot. Res. 28:1154–1168, 2009.

    Google Scholar 

  54. 54.

    Poquet, C., P. Mozer, M.-A. Vitrani, and G. Morel. An endorectal ultrasound probe comanipulator with hybrid actuation combining brakes and motors. IEEE/ASME Trans. Mechatron. 20:186–196, 2015.

    Google Scholar 

  55. 55.

    Sajima, H., I. Sato, H. Yamashita, T. Dohi, and K. Masamune. Two-dof non-metal manipulator with pneumatic stepping actuators for needle puncturing inside open-type MRI. World Autom. Congr. 3–8:2010, 2010.

    Google Scholar 

  56. 56.

    Salcudean S. E., T. D. Prananta, W. J. Morris, and I. Spadinger. A robotic needle guide for prostate brachytherapy. In: 2008 IEEE International Conference on Robotics and Automation. IEEE, 2008, pp. 2975–2981.

  57. 57.

    Sang-Eun Song S.-E., N. B. Cho, G. Fischer, N. Hata, C. Tempany, G. Fichtinger, and I. Iordachita. Development of a pneumatic robot for MRI-guided transperineal prostate biopsy and brachytherapy: new approaches. In: 2010 IEEE International Conference on Robotics and Automation. IEEE, 2010, pp. 2580–2585.

  58. 58.

    Sato I., R. Nakamura, and K. Masamune. MRI compatible manipulator with MRI-guided needle insertion support system. In: 2010 International Symposium on Micro-NanoMechatronics and Human Science. IEEE, 2010, pp. 77–82.

  59. 59.

    Schouten, M. G., J. Ansems, W. K. J. Renema, D. Bosboom, T. W. J. Scheenen, and J. J. Fütterer. The accuracy and safety aspects of a novel robotic needle guide manipulator to perform transrectal prostate biopsies. Med. Phys. 37:4744–4750, 2010.

    PubMed  Google Scholar 

  60. 60.

    Seifabadi, R., M. Li, S. Xu, Y. Chen, A. Squires, H. A. Negussie, I. Bakhutashvili, P. Choyke, B. I. Turkbey, T. Z. Tse, and J. B. Wood. MRI robot for prostate focal laser ablation: an ex vivo study in human prostate. J. Imaging 4:140, 2018.

    Google Scholar 

  61. 61.

    Seifabadi, R., S.-E. Song, A. Krieger, N. B. Cho, J. Tokuda, G. Fichtinger, and I. Iordachita. Robotic system for MRI-guided prostate biopsy: feasibility of teleoperated needle insertion and ex vivo phantom study. Int. J. Comput. Assist. Radiol. Surg. 7:181–190, 2012.

    PubMed  Google Scholar 

  62. 62.

    Shah, S., A. Kapoor, J. Ding, P. Guion, D. Petrisor, J. Karanian, W. F. Pritchard, D. Stoianovici, B. J. Wood, and K. Cleary. Robotically assisted needle driver: evaluation of safety release, force profiles, and needle spin in a swine abdominal model. Int. J. Comput. Assist. Radiol. Surg. 3:173–179, 2008.

    Google Scholar 

  63. 63.

    Song, S.-E., N. Hata, I. Iordachita, G. Fichtinger, C. Tempany, and J. Tokuda. A workspace-orientated needle-guiding robot for 3T MRI-guided transperineal prostate intervention: evaluation of in-bore workspace and MRI compatibility. Int. J. Med. Robot. Comput. Assist. Surg. 9:67–74, 2013.

    Google Scholar 

  64. 64.

    Song, S.-E., J. Tokuda, K. Tuncali, C. M. Tempany, E. Zhang, and N. Hata. Development and preliminary evaluation of a motorized needle guide template for MRI-guided targeted prostate biopsy. IEEE Trans. Biomed. Eng. 60:3019–3027, 2013.

    PubMed  Google Scholar 

  65. 65.

    Song S.-E., J. Tokuda, K. Tuncali, A. Yamada, M. Torabi, and N. Hata. Design evaluation of a double ring RCM mechanism for robotic needle guidance in MRI-guided liver interventions. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013, pp. 4078–4083.

  66. 66.

    Squires, A., J. Oshinski, J. Lamanna, and Z. T. H. Tse. SPINOTEMPLATE: a platform for MRI-guided spinal cord injections. J. Med. Robot. Res. 01:1640006, 2016.

    Google Scholar 

  67. 67.

    Stoianovici, D., C. Jun, S. Lim, P. Li, D. Petrisor, S. Fricke, K. Sharma, and K. Cleary. Multi-imager compatible, MR safe, remote center of motion needle-guide robot. IEEE Trans. Biomed. Eng. 65:165–177, 2018.

    PubMed  Google Scholar 

  68. 68.

    Stoianovici, D., C. Kim, D. Petrisor, C. Jun, S. Lim, M. W. Ball, A. Ross, K. J. Macura, and M. E. Allaf. MR safe robot, FDA clearance, safety and feasibility of prostate biopsy clinical trial. IEEE/ASME Trans. Mechatron. 22:115–126, 2017.

    Google Scholar 

  69. 69.

    Stoianovici, D., C. Kim, G. Srimathveeravalli, P. Sebrecht, D. Petrisor, J. Coleman, S. B. Solomon, and H. Hricak. MRI-safe robot for endorectal prostate biopsy. IEEE/ASME Trans. Mechatron. 19:1289–1299, 2013.

    Google Scholar 

  70. 70.

    Stoianovici, D., A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi. A new type of motor: pneumatic step motor. IEEE/ASME Trans. Mechatron. 12:98–106, 2007.

    Google Scholar 

  71. 71.

    Stoianovici, D., D. Song, D. Petrisor, D. Ursu, D. Mazilu, M. Mutener, M. Schar, and A. Patriciu. “MRI Stealth” robot for prostate interventions. Minim. Invasive Ther. Allied Technol. 16:241–248, 2007.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Su, H., W. Shang, G. Cole, G. Li, K. Harrington, A. Camilo, J. Tokuda, C. M. Tempany, N. Hata, and G. S. Fischer. piezoelectrically actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE/ASME Trans. Mechatron. 20:1920–1932, 2015.

    Google Scholar 

  73. 73.

    Su, H., W. Shang, G. Li, N. Patel, and G. S. Fischer. An MRI-guided telesurgery system using a fabry-perot interferometry force sensor and a pneumatic haptic device. Ann. Biomed. Eng. 45:1917–1928, 2017.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Sutherland, G. R., I. Latour, A. D. Greer, T. Fielding, G. Feil, and P. Newhook. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery 62:286–293, 2008.

    PubMed  Google Scholar 

  75. 75.

    Tadakuma K., L. M. DeVita, J. S. Plante, Y. Shaoze, and S. Dubowsky. The experimental study of a precision parallel manipulator with binary actuation: With application to MRI cancer treatment. In: 2008 IEEE International Conference on Robotics and Automation. IEEE, 2008, pp. 2503–2508.

  76. 76.

    Tanaiutchawoot N., C. Wiratkapan, B. Treepong, and J. Suthakorn. On the design of a biopsy needle-holding robot for a novel breast biopsy robotic navigation system. In: The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent. IEEE, 2014, pp. 480–484.

  77. 77.

    Tokuda, J., K. Tuncali, I. Iordachita, S.-E. Song, A. Fedorov, S. Oguro, A. Lasso, F. M. Fennessy, C. M. Tempany, and N. Hata. In-bore setup and software for 3T MRI-guided transperineal prostate biopsy. Phys. Med. Biol. 57:5823–5840, 2012.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Tsekos, N. V., E. Christoforou, and A. Ozcan. A general-purpose MR-compatible robotic system: implementation and image guidance for performing minimally invasive interventions. IEEE Eng. Med. Biol. Mag. 27:51–58, 2008.

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Vaida, C., N. Plitea, B. Gherman, A. Szilaghyi, B. Galdau, D. Cocorean, F. Covaciu, and D. Pisla. Structural analysis and synthesis of parallel robots for brachytherapy. In: New Trends in Medical and Service Robots: Theory and Integrated Applications, edited by D. Pisla, H. Bleuler, A. Rodic, C. Vaida, and A. Pisla. Cham: Springer International Publishing, 2014, pp. 191–204.

    Google Scholar 

  80. 80.

    van den Bosch, M. R., M. R. Moman, M. van Vulpen, J. J. Battermann, E. Duiveman, L. J. van Schelven, H. de Leeuw, J. J. W. Lagendijk, and M. A. Moerland. MRI-guided robotic system for transperineal prostate interventions: proof of principle. Phys. Med. Biol. 55:N133–N140, 2010.

    PubMed  Google Scholar 

  81. 81.

    Walsh, C. J., N. C. Hanumara, A. H. Slocum, J.-A. Shepard, and R. Gupta. A patient-mounted, telerobotic tool for CT-guided percutaneous interventions. J. Med. Devices 2:011007, 2008.

    Google Scholar 

  82. 82.

    Won, H. J., N. Kim, G. B. Kim, J. B. Seo, and H. Kim. Validation of a CT-guided intervention robot for biopsy and radiofrequency ablation: experimental study with an abdominal phantom. Diagn. Interv. Radiol. 23:233–237, 2017.

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Wu F. Y., M. Torabi, A. Yamada, A. Golden, G. S. Fischer, K. Tuncali, D. D. Frey, and C. Walsh. An MRI coil-mounted multi-probe robotic positioner for cryoablation. In: Volume 6A: 37th Mechanisms and Robotics Conference. ASME, 2013, p. V06AT07A012.

  84. 84.

    Yakar, D., M. G. Schouten, D. G. H. Bosboom, J. O. Barentsz, T. W. J. Scheenen, and J. J. Fütterer. Feasibility of a pneumatically actuated MR-compatible robot for transrectal prostate biopsy guidance. Radiology 260:241–247, 2011.

    PubMed  Google Scholar 

  85. 85.

    Yang, B., S. Roys, U.-X. Tan, M. Philip, H. Richard, R. Gullapalli, and J. P. Desai. Design, development, and evaluation of a master-slave surgical system for breast biopsy under continuous MRI. Int. J. Robot. Res. 33:616–630, 2014.

    Google Scholar 

  86. 86.

    Yang, B., U.-X. Tan, A. B. McMillan, R. Gullapalli, and J. P. Desai. Design and control of a 1-DOF MRI-compatible pneumatically actuated robot with long transmission lines. IEEE/ASME Trans. Mechatron. 16:1040–1048, 2011.

    Google Scholar 

  87. 87.

    Zemiti, N., I. Bricault, C. Fouard, B. Sanchez, and P. Cinquin. LPR: a CT and MR-compatible puncture robot to enhance accuracy and safety of image-guided interventions. IEEE/ASME Trans. Mechatron. 13:306–315, 2008.

    Google Scholar 

  88. 88.

    Zhang T., D. Navarro-Alarcon, K. W. Ng, M. K. Chow, Y. H. Liu, and H. L. Chung. A novel palm-shape breast deformation robot for MRI-guided biopsy. In: 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO 2016 527–532, 2017.

  89. 89.

    Zhu, J. H., J. Wang, Y. G. Wang, M. Li, Y. X. Guo, X. J. Liu, and C. B. Guo. Performance of robotic assistance for skull base biopsy: a phantom study. J. Neurol. Surg. B 78:385–392, 2017.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sang-Eun Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Ka-Wai Kwok oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, P., Sikander, S., Biswas, P. et al. Review of Robotic Needle Guide Systems for Percutaneous Intervention. Ann Biomed Eng 47, 2489–2513 (2019).

Download citation


  • Image guided
  • MRI
  • Needle insertion
  • Percutaneous therapy
  • Biopsy
  • Robotics