Skip to main content
Log in

Using Gait Variability to Predict Inter-individual Differences in Learning Rate of a Novel Obstacle Course

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study aimed to determine whether inter-individual differences in learning rate of a novel motor task could be predicted by movement variability exhibited in a related baseline task, and determine which variability measures best discriminate individual differences in learning rate. Thirty-two participants were asked to repeatedly complete an obstacle course until achieving success in a dual-task paradigm. Their baseline gait kinematics during self-paced level walking were used to calculate stride-to-stride variability in stride characteristics, joint angle trajectories, and inter-joint coordination. The gait variability measures were reduced to functional attributes through principal component analysis and used as predictors in multiple linear regression models. The models were used to predict the number of trials needed by each individual to complete the obstacle course successfully. Frontal plane coordination variability of the hip-knee and knee-ankle joint couples in both stance and swing phases of baseline gait were the strongest predictors, and explained 62% of the variance in learning rate. These results show that gait variability measures can be used to predict short-term differences in function between individuals. Future research examining statistical persistence in gait time series that can capture the temporal dimension of gait pattern variability, may further improve learning performance prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

SD:

Standard deviation

1MET:

1st metatarsal head

5MET:

5th metatarsal head

MAL:

Malleoli

CAL:

Calcaneus

FEM:

Femoral condyle

ASIS:

Anterior superior iliac spine

PSIS:

Posterior superior iliac spine

IC:

Iliac crest

GT:

Greater trochanter

SAC:

L4/L5 inter-vertebral space

TC:

Thigh cluster

SC:

Shank cluster

CA:

Coupling angle

CAV:

Coupling angle variability

PCA:

Principal component analysis

PC:

Principal component

PCR_StrideChar:

Multiple linear regression model using the principal components from stride characteristic variability measures only

PCR_StanceKin:

Multiple linear regression model using the principal components from stance phase kinematic variability measures only

PCR_SwingKin:

Multiple linear regression model using the principal components from swing phase kinematic variability measures only

PCR_Overall:

Overall regression model using predictors that were selected by a step-wise regression model which included principal components from all three gait variability models

Initial_Time:

Trial completion time on the first obstacle course trial

R2 :

Explained variance

PC1_StrideChar:

First principal component of the principal component analysis that used stride characteristics only

PC2_StrideChar:

Second principal component of the principal component analysis that used stride characteristic variability measures only

PC1_StanceKin:

First principal component of the principal component analysis that used stance phase kinematic variability measures only

PC2_StanceKin:

Second principal component of the principal component analysis that used stance phase kinematic variability measures only

PC3_StanceKin:

Third principal component of the principal component analysis that used stance phase kinematic variability measures only

PC1_SwingKin:

First principal component of the principal component analysis that used swing phase kinematic variability measures only

PC2_SwingKin:

Second principal component of the principal component analysis that used swing phase kinematic variability measures only

PC3_SwingKin:

Third principal component of the principal component analysis that used swing phase kinematic variability measures only

References

  1. Bartlett, R., J. Wheat, and M. Robins. Is movement variability important for sports biomechanists? Sports Biomech. 6:224–243, 2007.

    Article  PubMed  Google Scholar 

  2. Berry, S. D., and R. F. Thompson. Prediction of learning rate from the hippocampal electroencephalogram. Science 200:1298–1300, 1978.

    Article  CAS  PubMed  Google Scholar 

  3. Bradshaw, E. J., P. S. Maulder, and J. W. Keogh. Biological movement variability during the sprint start: performance enhancement or hindrance? Sports Biomech 6:246–260, 2007.

    Article  PubMed  Google Scholar 

  4. Burgess, P. Movement cues are necessary for load stabilization against low friction. Neuroscience 15:173, 1989.

    Google Scholar 

  5. Butler, R. J., J. D. Willson, D. Fowler, and R. M. Queen. Gender differences in landing mechanics vary depending on the type of landing. Clin J Sport Med 23:52–57, 2013.

    Article  PubMed  Google Scholar 

  6. Carpenter, M., C. Murnaghan, and J. Inglis. Shifting the balance: evidence of an exploratory role for postural sway. Neuroscience 171:196–204, 2010.

    Article  CAS  PubMed  Google Scholar 

  7. Cazzola, D., G. Pavei, and E. Preatoni. Can coordination variability identify performance factors and skill level in competitive sport? The case of race walking. J Sport Health Sci 5:35–43, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chao, E. Y. Justification of triaxial goniometer for the measurement of joint rotation. J Biomech 13:989–1006, 1980.

    Article  CAS  PubMed  Google Scholar 

  9. Diedrich, F. J., and W. H. Warren, Jr. Why change gaits? Dynamics of the walk-run transition. J Exp Psychol 21:183, 1995.

    CAS  Google Scholar 

  10. Ducharme, S. W., J. J. Liddy, J. M. Haddad, M. A. Busa, L. J. Claxton, and R. E. van Emmerik. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking. Hum Mov Sci 58:248–259, 2018.

    Article  PubMed  Google Scholar 

  11. Efron, B., and R. Tibshirani. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1(1):54–75, 1986.

    Article  Google Scholar 

  12. Freedman Silvernail, J., R. E. van Emmerik, K. Boyer, M. A. Busa, and J. Hamill. Comparisons of segment coordination: an investigation of vector coding. J. Appl. Biomech. 20:1–6, 2018.

    Google Scholar 

  13. Gabell, A., and U. Nayak. The effect of age on variability in gait. J. Gerontol. 39:662–666, 1984.

    Article  CAS  PubMed  Google Scholar 

  14. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105:136–144, 1983.

    Article  CAS  PubMed  Google Scholar 

  15. Haken, H., J. S. Kelso, and H. Bunz. A theoretical model of phase transitions in human hand movements. Biol. Cybernet. 51:347–356, 1985.

    Article  CAS  Google Scholar 

  16. Hamill, J., J. M. Haddad, and W. J. McDermott. Issues in quantifying variability from a dynamical systems perspective. J. Appl. Biomech. 16:407–418, 2000.

    Article  Google Scholar 

  17. Hausdorff, J. M. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 26:555–589, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hausdorff, J. M., H. K. Edelberg, S. L. Mitchell, A. L. Goldberger, and J. Y. Wei. Increased gait unsteadiness in community-dwelling elderly fallers. Arch Phys Med Rehabil 78:278–283, 1997.

    Article  CAS  PubMed  Google Scholar 

  19. Heiderscheit, B. C. Movement variability as a clinical measure for locomotion. J. Appl. Biomech. 16:419–427, 2000.

    Article  Google Scholar 

  20. Heiderscheit, B. C., J. Hamill, and R. E. A. van Emmerik. Variability of stride characteristics and joint coordination among individuals with unilateral patellofemoral pain. J. Appl. Biomech. 18:110–121, 2002.

    Article  Google Scholar 

  21. Herzfeld, D. J., and R. Shadmehr. Motor variability is not noise, but grist for the learning mill. Nat. Neurosci. 17:149, 2014.

    Article  CAS  PubMed  Google Scholar 

  22. Jordan, K., J. H. Challis, J. P. Cusumano, and K. M. Newell. Stability and the time-dependent structure of gait variability in walking and running. Hum. Mov. Sci. 28:113–128, 2009.

    Article  PubMed  Google Scholar 

  23. Kincses, Z. T., H. Johansen-Berg, V. Tomassini, R. Bosnell, P. M. Matthews, and C. F. Beckmann. Model-free characterization of brain functional networks for motor sequence learning using fMRI. Neuroimage 39:1950–1958, 2008.

    Article  Google Scholar 

  24. Konig, N., N. B. Singh, J. von Beckerath, L. Janke, and W. R. Taylor. Is gait variability reliable? An assessment of spatio-temporal parameters of gait variability during continuous overground walking. Gait Posture 39:615–617, 2014.

    Article  CAS  PubMed  Google Scholar 

  25. Latash, M. L., J. P. Scholz, and G. Schoner. Motor control strategies revealed in the structure of motor variability. Exerc. Sport Sci. Rev. 30:26–31, 2002.

    Article  PubMed  Google Scholar 

  26. Li, L., J. M. Haddad, and J. Hamill. Stability and variability may respond differently to changes in walking speed. Hum. Mov. Sci. 24:257–267, 2005.

    Article  PubMed  Google Scholar 

  27. Maki, B. E. Gait changes in older adults: predictors of falls or indicators of fear? J. Am. Geriatr. Soc. 45:313–320, 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Marx, R. G., T. J. Stump, E. C. Jones, T. L. Wickiewicz, and R. F. Warren. Development and evaluation of an activity rating scale for disorders of the knee. Am. J. Sports Med. 29:213–218, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. McGrath, D., M. Patterson, U. M. Persson, and B. Caulfield. Frontal-plane variability in foot orientation during fatiguing running exercise in individuals with chronic ankle instability. J. Athel. Train. 52:1019–1027, 2017.

    Article  Google Scholar 

  30. Preatoni, E., M. Ferrario, G. Dona, J. Hamill, and R. Rodano. Motor variability in sports: a non-linear analysis of race walking. J. Sports Sci. 28:1327–1336, 2010.

    Article  PubMed  Google Scholar 

  31. Riccio, G. E. Information in movement variability about the qualitative dynamics of posture and orientation. In: Variability and motor control, edited by K. M. Newell, and D. M. Corcos. Champaign, Ill: Human Kinetics, 1993, pp. 317–357.

    Google Scholar 

  32. Sandlund, J., D. Srinivasan, M. Heiden, and S. E. Mathiassen. Differences in motor variability among individuals performing a standardized short-cycle manual task. Hum. Mov. Sci. 51:17–26, 2017.

    Article  PubMed  Google Scholar 

  33. Sasaki, M. Observations on micro-exploration in everyday activities. Stud. Percept. Action III:99–102, 1995.

    Google Scholar 

  34. Sparrow, W. A., E. Donovan, R. Vanemmerik, and E. B. Barry. Using relative motion plots to measure changes in intra-limb and inter-limb coordination. J. Motor Behav. 19:115–129, 1987.

    Article  CAS  Google Scholar 

  35. Srinivasan, D., T. Rudolfsson, and S. E. Mathiassen. Between- and within-subject variance of motor variability metrics in females performing repetitive upper-extremity precision work. J. Electromyogr. Kinesiol. 25:121–129, 2015.

    Article  PubMed  Google Scholar 

  36. Tabachnick, B. G., and L. S. Fidell. Using multivariate statistics. Boston: Pearson Education, 2013.

    Google Scholar 

  37. Tomassini, V., S. Jbabdi, Z. T. Kincses, R. Bosnell, G. Douaud, C. Pozzilli, P. M. Matthews, and H. Johansen-Berg. Structural and functional bases for individual differences in motor learning. Hum. Brain Mapp. 32:494–508, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wilson, C., S. E. Simpson, R. E. A. Van Emmerik, and J. Hamill. Coordination variability and skill development in expert triple jumpers. Sports Biomech. 7:2–9, 2008.

    Article  PubMed  Google Scholar 

  39. Wu, Y.-H., and M. L. Latash. The effects of practice on coordination. Exerc. Sport Sci. Rev. 42:37, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu, H. G., Y. R. Miyamoto, L. N. G. Castro, B. P. Ölveczky, and M. A. Smith. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat. Neurosci. 17:312, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wurdeman, S. R., N. B. Huben, and N. J. J. O. B. Stergiou. Variability of gait is dependent on direction of progression: implications for active control. J. Biomech. 45:653–659, 2012.

    Article  PubMed  Google Scholar 

  42. Young, A. J., and D. P. Ferris. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 25:171–182, 2017.

    Article  PubMed  Google Scholar 

  43. Yu, B. Effect of external marker sets on between-day reproducibility of knee kinematics and kinetics in stair climbing and level walking. Res. Sports Med. 11:209–218, 2003.

    Article  PubMed  Google Scholar 

  44. Yu, B., C.-F. Lin, and W. E. Garrett. Lower extremity biomechanics during the landing of a stop-jump task. Clin. Biomech. 21:297–305, 2006.

    Article  Google Scholar 

  45. Zeni, Jr, J., J. Richards, and J. Higginson. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 27:710–714, 2008.

    Article  PubMed  Google Scholar 

  46. Zwick, W. R., and W. F. Velicer. Comparison of five rules for determining the number of components to retain. Psychol. Bull. 99:432, 1986.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contributions of Melanie Kangelaris and Willow Ruud for their assistance with data collection and processing.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Srinivasan.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulman, S., Ranganathan, S., Queen, R. et al. Using Gait Variability to Predict Inter-individual Differences in Learning Rate of a Novel Obstacle Course. Ann Biomed Eng 47, 1191–1202 (2019). https://doi.org/10.1007/s10439-019-02236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02236-x

Keywords

Navigation