Skip to main content
Log in

A 3D Computational Head Model Under Dynamic Head Rotation and Head Extension Validated Using Live Human Brain Data, Including the Falx and the Tentorium

  • State-of-the-Art Modeling and Simulation of the Brain's Response to Mechanical Loads
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We employ an advanced 3D computational model of the head with high anatomical fidelity, together with measured tissue properties, to assess the consequences of dynamic loading to the head in two distinct modes: head rotation and head extension. We use a subject-specific computational head model, using the material point method, built from T1 magnetic resonance images, and considering the anisotropic properties of the white matter which can predict strains in the brain under large rotational accelerations. The material model now includes the shear anisotropy of the white matter. We validate the model under head rotation and head extension motions using live human data, and advance a prior version of the model to include biofidelic falx and tentorium. We then examine the consequences of incorporating the falx and tentorium in terms of the predictions from the computational head model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Amini, A. A., Y. Chen, R. W. Curwen, V. Mani, and J. Sun. Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI. IEEE Trans. Med. Imaging. 17(3):344–356, 1998. https://doi.org/10.1109/42.712124.

    Article  CAS  PubMed  Google Scholar 

  2. Bayly, P. V., T. S. Cohen, E. P. Leister, D. Ajo, E. Leuthardt, and G. M. Genin. Deformation of the human brain induced by mild acceleration. J. Neurotrauma. 22(8):845–856, 2005. https://doi.org/10.1089/neu.2005.22.845.

    Article  CAS  PubMed  Google Scholar 

  3. Belingardi, G., G. Chiandussi, I. Gaviglio. Development and Validation of a New Finite Element Model of Human Head. In: 19th International Technical Conference on the Enhanced Safety of Vehicles; 2005.

  4. Cole, R. H., and R. Weller. Underwater explosions. Phys. Today. 1(6):35, 1948.

    Article  Google Scholar 

  5. Daghighi, M. H., V. Rezaei, S. Zarrintan, and H. Pourfathi. Intracranial physiological calcifications in adults on computed tomography in Tabriz, Iran. Folia Morphol. (Warsz) 66(2):115–119, 2007.

    CAS  Google Scholar 

  6. Daphalapurkar, N. P., H. Lu, D. Coker, and R. Komanduri. Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method. Int. J. Fract. 143:79, 2007.

    Article  Google Scholar 

  7. de Lange, R., L. van Rooij, H. Mooi, and J. Wismans. Objective biofidelity rating of a numerical human occupant model in frontal to lateral impact. Stapp Car Crash J. 49:457–479, 2005.

    PubMed  Google Scholar 

  8. Faul, M., L. Xu, M. M. Wald, and V. G. Coronado. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Atlanta: Centers for Disease Control and Prevention, 2010.

    Book  Google Scholar 

  9. Feng, Y., R. J. Okamoto, R. Namani, G. M. Genin, and P. V. Bayly. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23:117–132, 2013. https://doi.org/10.1016/j.jmbbm.2013.04.007.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ganpule, S., N. P. Daphalapurkar, M. P. Cetingul, and K. T. Ramesh. Effect of bulk modulus on deformation of the brain under rotational accelerations. Shock Waves. 28(1):127–139, 2018. https://doi.org/10.1007/s00193-017-0791-z.

    Article  CAS  PubMed  Google Scholar 

  11. Ganpule, S., N. P. Daphalapurkar, K. T. Ramesh, et al. A three-dimensional computational human head model that captures live human brain dynamics. J. Neurotrauma. 34(13):2154–2166, 2017. https://doi.org/10.1089/neu.2016.4744.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface. 3(6):15–35, 2006. https://doi.org/10.1098/rsif.2005.0073.

    Article  PubMed  Google Scholar 

  13. Glaister, J., A. Carass, D. L. Pham, J. A. Butman, and J. L. Prince. Automatic falx cerebri and tentorium cerebelli segmentation from magnetic resonance images. Proc. SPIE 2017. https://doi.org/10.1117/12.2255640.

    Article  Google Scholar 

  14. Goldsmith, W. Biomechanics of head injury. In: Biomechanics: Its Foundations and Objectives, edited by Y. C. Fung. Englewood Cliffs, NJ: Prentice Hall, 1972, pp. 585–634.

    Google Scholar 

  15. Green, M. A., L. E. Bilston, and R. Sinkus. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 21(7):755–764, 2008. https://doi.org/10.1002/nbm.1254.

    Article  PubMed  Google Scholar 

  16. Gross, A. G. Impact thresholds of brain concussion. J. Aviat. Med. 29(10):725–732, 1958.

    CAS  PubMed  Google Scholar 

  17. Hansson, H.-A., U. Krave, S. Höjer, and J. Davidsson. neck flexion induces larger deformation of the brain than extension at a rotational acceleration, closed head trauma. Adv. Neurosci. 2014:945869, 2014.

    Article  Google Scholar 

  18. Ho, J., Z. Zhou, X. Li, and S. Kleiven. The peculiar properties of the falx and tentorium in brain injury biomechanics. J. Biomech. 60:243–247, 2017. https://doi.org/10.1016/j.jbiomech.2017.06.023.

    Article  PubMed  Google Scholar 

  19. Hodgson, V. R., L. M. Thomas, E. S. Gurdjian, O. U. Fernando, S. W. Greenberg, and J. Chason. Advances in understanding of experimental concussion mechanisms. Soc Automot Eng. 1969:387–406.

  20. Holbourn, A. H. S. Mechanics of head injuries. Lancet. 242(6267):438–441, 1943. https://doi.org/10.1016/S0140-6736(00)87453-X.

    Article  Google Scholar 

  21. Horgan, T. J., and M. D. Gilchrist. Influence of FE model variability in predicting brain motion and intracranial pressure changes in head impact simulations. Int. J. Crashworthiness. 9(4):401–418, 2004. https://doi.org/10.1533/ijcr.2004.0299.

    Article  Google Scholar 

  22. Hyder, A. A., C. A. Wunderlich, P. Puvanachandra, G. Gururaj, and O. C. Kobusingye. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 22(5):341–353, 2007.

    PubMed  Google Scholar 

  23. Ji, S., H. Ghadyani, R. P. Bolander, et al. Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head. Ann. Biomed. Eng. 42(1):11–24, 2014. https://doi.org/10.1007/s10439-013-0907-2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jin, X., J. B. Lee, L. Y. Leung, et al. Biomechanical response of the bovine pia-arachnoid complex to tensile loading at varying strain-rates. Stapp Car Crash J. 50:637–649, 2006.

    PubMed  Google Scholar 

  25. Joldes, G. R., B. Doyle, A. Wittek, P. M. F. Nielsen, and K. Miller. Computational Biomechanics for Medicine: Imaging, Modeling and Computing (1st ed.). New York: Springer, 2016. https://doi.org/10.1007/978-3-319-28329-6.

    Book  Google Scholar 

  26. Karami, G., N. Grundman, N. Abolfathi, A. Naik, and M. Ziejewski. A micromechanical hyperelastic modeling of brain white matter under large deformation. J. Mech. Behav. Biomed. Mater. 2(3):243–254, 2009. https://doi.org/10.1016/j.jmbbm.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  27. Kimpara, H., Y. Nakahira, M. Iwamoto, et al. Investigation of anteroposterior head-neck responses during severe frontal impacts using a brain-spinal cord complex FE model. Stapp Car Crash J. 50:509–544, 2006.

    PubMed  Google Scholar 

  28. Knutsen, A. K., E. Magrath, J. E. McEntee, et al. Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence. J. Biomech. 47(14):3475–3481, 2014. https://doi.org/10.1016/j.jbiomech.2014.09.010.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kumar, S., and D. Goldgof. Automatic tracking of SPAMM grid and the estimation of deformation parameters from cardiac MR images. IEEE Trans. Med. Imaging. 13(1):122–132, 1994. https://doi.org/10.1109/42.276150.

    Article  CAS  PubMed  Google Scholar 

  30. Labus, K. M., and C. M. Puttlitz. An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural-mechanical relationships. J. Mech. Behav. Biomed. Mater. 62:195–208, 2016. https://doi.org/10.1016/j.jmbbm.2016.05.003.

    Article  PubMed  Google Scholar 

  31. Lee, S. J., M. A. King, J. Sun, H. K. Xie, G. Subhash, and M. Sarntinoranont. Measurement of viscoelastic properties in multiple anatomical regions of acute rat brain tissue slices. J. Mech. Behav. Biomed. Mater. 29:213–224, 2014. https://doi.org/10.1016/j.jmbbm.2013.08.026.

    Article  CAS  PubMed  Google Scholar 

  32. Mao, H., L. Zhang, B. Jiang, et al. Development of a finite element human head model partially validated with thirty five experimental cases. J. Biomech. Eng. 135(11):111002, 2013. https://doi.org/10.1115/1.4025101.

    Article  PubMed  Google Scholar 

  33. Masson, F., M. Thicoipe, P. Aye, et al. Epidemiology of severe brain injuries: a prospective population-based study. J. Trauma. 51(3):481–489, 2001.

    CAS  PubMed  Google Scholar 

  34. McElhaney, J. H. Dynamic response of bone and muscle tissue. J. Appl. Physiol. 21(4):1231–1236, 1966. https://doi.org/10.1152/jappl.1966.21.4.1231.

    Article  CAS  PubMed  Google Scholar 

  35. Moss, S., Z. Wang, and M. Salloum et al. Anthropometry for WorldSID, a World-Harmonized Midsize Male Side Impact Crash Dummy, 2000.

  36. Nahum, A. M., C. C. Ward, and R. Smith. Intracranial pressure dynamics during head impact. Stapp Car Crash Conf. 21:337–366, 1977.

    Google Scholar 

  37. Nolan, D. R., A. L. Gower, M. Destrade, R. W. Ogden, and J. P. McGarry. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. J. Mech. Behav. Biomed. Mater. 39:48–60, 2014. https://doi.org/10.1016/j.jmbbm.2014.06.016.

    Article  CAS  PubMed  Google Scholar 

  38. Prange, M. T., and S. S. Margulies. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124(2):244–252, 2002.

    Article  PubMed  Google Scholar 

  39. Pudenz, R. H., and C. H. Shelden. The lucite calvarium; a method for direct observation of the brain; cranial trauma and brain movement. J. Neurosurg. 3(6):487–505, 1946. https://doi.org/10.3171/jns.1946.3.6.0487.

    Article  CAS  PubMed  Google Scholar 

  40. Sadeghirad, A., R. M. Brannon, and J. Burghardt. A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int. J. Numer. Meth. Engng. 86:1435–1456, 2011.

    Article  Google Scholar 

  41. Salo, P. K., J. J. Ylinen, E. A. Malkia, H. Kautiainen, and A. H. Hakkinen. Isometric strength of the cervical flexor, extensor, and rotator muscles in 220 healthy females aged 20 to 59 years. J. Orthop. Sports Phys. Ther. 36(7):495–502, 2006. https://doi.org/10.2519/jospt.2006.2122.

    Article  PubMed  Google Scholar 

  42. Snijders, C. J., G. A. Hoek van Dijke, and E. R. Roosch. A biomechanical model for the analysis of the cervical spine in static postures. J. Biomech. 24(9):783–792, 1991.

    Article  CAS  PubMed  Google Scholar 

  43. Song, X., C. Wang, H. Hu, T. Huang, and J. Jin. A finite element study of the dynamic response of brain based on two parasagittal slice models. Comput. Math. Methods Med. 2015:816405, 2015. https://doi.org/10.1155/2015/816405.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tagliaferri, F., C. Compagnone, M. Korsic, F. Servadei, and J. Kraus. A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien). 148(3):255–268, 2006. https://doi.org/10.1007/s00701-005-0651-y; (discussion 268).

    Article  CAS  PubMed  Google Scholar 

  45. Takhounts, E. G., R. H. Eppinger, J. Q. Campbell, R. E. Tannous, E. D. Power, and L. S. Shook. On the development of the SIMon finite element head model. Stapp Car Crash J. 47:107–133, 2003.

    PubMed  Google Scholar 

  46. Velardi, F., F. Fraternali, and M. Angelillo. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model Mechanobiol. 5(1):53–61, 2006. https://doi.org/10.1007/s10237-005-0007-9.

    Article  CAS  PubMed  Google Scholar 

  47. Wright, R. M., A. Post, B. Hoshizaki, and K. T. Ramesh. A multiscale computational approach to estimating axonal damage under inertial loading of the head. J. Neurotrauma. 30(2):102–118, 2013. https://doi.org/10.1089/neu.2012.2418.

    Article  PubMed  Google Scholar 

  48. Wright, R. M., and K. T. Ramesh. An axonal strain injury criterion for traumatic brain injury. Biomech. Model. Mechanobiol. 11:245–260, 2012.

    Article  PubMed  Google Scholar 

  49. Wu, X., J. Hu, L. Zhuo, et al. Epidemiology of traumatic brain injury in eastern China, 2004: a prospective large case study. J. Trauma. 64(5):1313–1319, 2008. https://doi.org/10.1097/TA.0b013e318165c803.

    Article  PubMed  Google Scholar 

  50. Zhang, L., K. H. Yang, R. Dwarampudi, et al. Recent advances in brain injury research: a new human head model development and validation. Stapp Car Crash J. 45:369–394, 2001.

    CAS  PubMed  Google Scholar 

  51. Zhang, L., K. H. Yang, and A. I. King. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126(2):226–236, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was this research was provided by NIH Grant NS055951 from the National Institute of Neurological Disorders and Stroke. This work was partially supported by the Department of Defense in the Center for Neuroscience and Regenerative Medicine (CNRM), and by the Intramural Research Program of the Clinical Center of the National Institutes of Health. Discussions with Fatma Madouh and Amy Dagro are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Ramesh.

Additional information

Associate Editor Mark Horstemeyer oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, YC., Daphalapurkar, N.P., Knutsen, A.K. et al. A 3D Computational Head Model Under Dynamic Head Rotation and Head Extension Validated Using Live Human Brain Data, Including the Falx and the Tentorium. Ann Biomed Eng 47, 1923–1940 (2019). https://doi.org/10.1007/s10439-019-02226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02226-z

Keywords

Navigation