Skip to main content
Log in

IGBT-Based Pulsed Electric Fields Generator for Disinfection: Design and In Vitro Studies on Pseudomonas aeruginosa

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Irreversible electroporation of cell membrane with pulsed electric fields is an emerging physical method for disinfection that aims to reduce the doses and volumes of used antibiotics for wound healing. Here we report on the design of the IGBT-based pulsed electric field generator that enabled eradication of multidrug resistant Pseudomonas aeruginosa PAO1 on the gel. Using a concentric electric configuration we determined that the lower threshold of the electric field required to kill P. aeruginosa PAO1 was 89.28 ± 12.89 V mm−1, when 200 square pulses of 300 µs duration are delivered at 3 Hz. These parameters disinfected 38.14 ± 0.79 mm2 area around the single needle electrode. This study provides a step towards the design of equipment required for multidrug-resistant bacteria disinfection in patients with pulsed electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abram, F., J. P. P. M. Smelt, R. Bos, and P. C. Wouters. Modelling and optimization of inactivation of Lactobacillus plantarum by pulsed electric field treatment. J. Appl. Microbiol. 2003. https://doi.org/10.1046/j.1365-2672.2003.01869.x.

    Article  PubMed  Google Scholar 

  2. Alneami, A. Q., E. G. Khalil, R. A. Mohsien, and A. F. Albeldawi. Effect of electrical current stimulation on Pseudomonas Aeruginosa growth. J. Phys. Conf. Ser. 1003:012112, 2018.

    Article  CAS  Google Scholar 

  3. Arena, C. B., M. B. Sano, J. H. Rossmeisl, J. L. Caldwell, P. A. Garcia, M. Rylander, and R. V. Davalos. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed. Eng. 10:102, 2011.

    Google Scholar 

  4. Bae, S., A. Kwasinski, M. M. Flynn, and R. E. Hebner. High-power pulse generator with flexible output pattern. IEEE Trans. Power Electron. 25:1675–1684, 2010.

    Article  Google Scholar 

  5. Blumrosen, G., A. Abazari, A. Golberg, M. L. Yarmush, and M. Toner. Single-step electrical field strength screening to determine electroporation induced transmembrane transport parameters. Biochim. Biophys. Acta 2041–2049:2016, 1858.

    Google Scholar 

  6. Bowler, P. G., B. I. Duerden, and D. G. Armstrong. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 14(2):244–269, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cemazar, M., G. Sersa, W. Frey, D. Miklavcic, and J. Teissié. Recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples. Bioelectrochemistry 2018. https://doi.org/10.1016/j.bioelechem.2018.03.005.

    Article  PubMed  Google Scholar 

  8. Church, D., S. Elsayed, O. Reid, B. Winston, and R. Lindsay. Burn wound infections. Clin. Microbiol. Rev. 19:403–434, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Corovic, S., A. Zupanic, and D. Miklavcic. Numerical modeling and optimization of electric field distribution in subcutaneous tumor treated with electrochemotherapy using needle electrodes. IEEE Trans. Plasma Sci. 2008. https://doi.org/10.1109/tps.2008.2000996.

    Article  Google Scholar 

  10. Dancer, S. J. The role of environmental cleaning in the control of hospital-acquired infection. J. Hosp. Infect. 73:378–385, 2009.

    Article  CAS  PubMed  Google Scholar 

  11. Davalos, R. V., L. M. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Del Pozo, J. L., M. S. Rouse, J. N. Mandrekar, J. M. Steckelberg, and R. Patel. The electricidal effect: reduction of Staphylococcus and Pseudomonas biofilms by prolonged exposure to low-intensity electrical current. Antimicrob. Agents Chemother. 2009. https://doi.org/10.1128/aac.00680-08.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fernand, F., L. Rubinsky, A. Golberg, and B. Rubinsky. Variable electric fields for high throughput electroporation protocol design in curvilinear coordinates. Biotechnol. Bioeng. 109:2168–2171, 2012.

    Article  CAS  PubMed  Google Scholar 

  14. Giladi, M., Y. Porat, A. Blatt, E. Shmueli, Y. Wasserman, E. D. Kirson, and Y. Palti. Microbial growth inhibition by alternating electric fields in mice with Pseudomonas aeruginosa lung infection. Antimicrob. Agents Chemother., 2010. https://doi.org/10.1128/aac.01841-09.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Golberg, A., G. F. Broelsch, D. Vecchio, S. Khan, M. R. Hamblin, W. G. Austen, R. L. Sheridan, and M. L. Yarmush. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field. Technology 2:153–160, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Golberg, A., G. F. Broelsch, D. Vecchio, S. Khan, M. R. M. R. Hamblin, W. G. Austen, R. L. Sheridan, and M. L. Yarmush. Pulsed electric fields for burn wound disinfection in a murine model. J. Burn Care Res. 36(1):7–13, 2014.

    Article  Google Scholar 

  17. Golberg, A., J. Fischer, and B. Rubinsky. The use of irreversible electroporation in food preservation. Berlin: Springer, 2010.

    Book  Google Scholar 

  18. Golberg, A., S. Khan, V. Belov, K. P. Quinn, H. Albadawi, G. Felix Broelsch, M. T. Watkins, I. Georgakoudi, M. Papisov, M. C. Mihm, W. G. Austen, and M. L. Yarmush. Skin rejuvenation with non-invasive pulsed electric fields. Sci. Rep. 5:10187, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Golberg, A., M. Villiger, G. Felix Broelsch, K. P. Quinn, H. Albadawi, S. Khan, M. T. Watkins, I. Georgakoudi, W. G. Austen, M. Bei, B. E. Bouma, M. C. Mihm, and M. L. Yarmush. Skin regeneration with all accessory organs following ablation with irreversible electroporation. J. Tissue Eng. Regen. Med. 1:100, 2017. https://doi.org/10.1002/term.2374.

    Article  CAS  Google Scholar 

  20. Golberg, A., M. Villiger, S. Khan, K. P. Quinn, W. C. Y. Lo, B. E. Bouma, M. C. Mihm, W. G. Austen, and M. L. Yarmush. Preventing scars after injury with partial irreversible electroporation. J. Invest. Dermatol. 136(11):2297–2304, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gusbeth, C., W. Frey, H. Volkmann, T. Schwartz, and H. Bluhm. Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 2009. https://doi.org/10.1016/j.chemosphere.2008.11.066.

    Article  PubMed  Google Scholar 

  22. Hashimoto, M. C. E., R. A. Prates, I. T. Kato, S. C. Núñez, L. C. Courrol, and M. S. Ribeiro. Antimicrobial photodynamic therapy on drug-resistant Pseudomonas aeruginosa-induced infection. An in vivo study. Photochem. Photobiol. 88:590–595, 2012.

    Article  CAS  PubMed  Google Scholar 

  23. Ho, S. Y., G. S. Mittal, J. D. Cross, and M. W. Griffiths. Inactivation of Pseudomonas fluorescens by high voltage electric pulses. J. Food Sci. 60:1337–1340, 1995.

    Article  CAS  Google Scholar 

  24. Hofmann, G. A. Instrumentation and electrodes for in vivo electroporation. In: Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery, edited by R. Heller, and R. Gilbert. Totowa, NJ: Humana Press, 2000, pp. 37–61. https://doi.org/10.1385/1-59259-080-2:37.

    Chapter  Google Scholar 

  25. Kaplan, J. B., C. Ragunath, K. Velliyagounder, D. H. Fine, and N. Ramasubbu. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 48:2633–2636, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Korem, M., N. S. Goldberg, A. Cahan, M. J. Cohen, I. Nissenbaum, and A. E. Moses. Clinically applicable irreversible electroporation for eradication of micro-organisms. Lett. Appl. Microbiol. 67:15–21, 2018.

    Article  CAS  PubMed  Google Scholar 

  27. Kotnik, T., P. Kramar, G. Pucihar, D. Miklavčič, and M. Tarek. Cell membrane electroporation—part 1: the phenomenon. IEEE Electr. Insul. Mag. 28:14–23, 2012.

    Article  Google Scholar 

  28. Krieg, A. M., A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995. https://doi.org/10.1038/374546a0.

    Article  PubMed  Google Scholar 

  29. Krishnaveni, S., R. Subhashini, and V. Rajini. Inactivation of bacteria suspended in water by using high frequency unipolar pulse voltage. J. Food Process Eng. 40:e12574, 2017.

    Article  Google Scholar 

  30. Maor, E., A. Ivorra, and B. Rubinsky. Non thermal irreversible electroporation: novel technology for vascular smooth muscle cells ablation. PLoS ONE 2009. https://doi.org/10.1371/journal.pone.0004757.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marty, M., G. Sersa, J. R. Garbay, J. Gehl, C. G. Collins, M. Snoj, V. Billard, P. F. Geertsen, J. O. Larkin, D. Miklavcic, I. Pavlovic, S. M. Paulin-Kosir, M. Cemazar, N. Morsli, D. M. Soden, Z. Rudolf, C. Robert, G. C. O’Sullivan, and L. M. Mir. Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) Study. Eur. J. Cancer Suppl. 4:3–13, 2006.

    Article  CAS  Google Scholar 

  32. Neher, M. D., S. Weckbach, M. A. Flierl, M. S. Huber-Lang, and P. F. Stahel. Molecular mechanisms of inflammation and tissue injury after major trauma-is complement the “bad guy”? J. Biomed. Sci. 18:90, 2011. https://doi.org/10.1186/1423-0127-18-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neumann, E., and S. Kakorin. Membrane electroporation: chemical thermodynamics and flux kinetics revisited and refined. Eur. Biophys. J. 2018. https://doi.org/10.1007/s00249-018-1305-3.

    Article  PubMed  Google Scholar 

  34. Nolff, M. C., S. Reese, M. Fehr, R. Dening, and A. Meyer-Lindenberg. Assessment of wound bio-burden and prevalence of multi-drug resistant bacteria during open wound management. J. Small Anim. Pract. 57:255–259, 2016.

    Article  CAS  PubMed  Google Scholar 

  35. Nomura, M., Y. Nakata, T. Inoue, A. Uzawa, S. Itamura, K. Nerome, M. Akashi, and G. Suzuki. In vivo induction of cytotoxic T lymphocytes specific for a single epitope introduced into an unrelated molecule. J. Immunol. Methods 193:41–49, 1996.

    Article  CAS  PubMed  Google Scholar 

  36. Novickij, V., A. Grainys, J. Novickij, S. Tolvaisiene, and S. Markovskaja. Compact electro-permeabilization system for controlled treatment of biological cells and cell medium conductivity change measurement. Meas. Sci. Rev. 2014. https://doi.org/10.2478/msr-2014-0038.

    Article  Google Scholar 

  37. Nuccitelli, R., U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach. Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem. Biophys. Res. Commun. 2006. https://doi.org/10.1016/j.bbrc.2006.02.181.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Okino, M., and H. Mohri. Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn. J. Cancer Res 72:1319–1321, 1987.

    Google Scholar 

  39. Pakhomova, O. N., B. W. Gregory, V. A. Khorokhorina, A. M. Bowman, S. Xiao, and A. G. Pakhomov. Electroporation-induced electrosensitization. PLoS ONE 2011. https://doi.org/10.1371/journal.pone.0017100.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Perez-Roa, R. E., D. T. Tompkins, M. Paulose, C. A. Grimes, M. A. Anderson, and D. R. Noguera. Effects of localised, low-voltage pulsed electric fields on the development and inhibition of Pseudomonas aeruginosa biofilms. Biofouling 2006. https://doi.org/10.1080/08927010601053541.

    Article  PubMed  Google Scholar 

  41. Pirac, E., M. Reberšek, and D. Miklavčič. Dosimetry in electroporation-based technologies and treatments. In: Dosimetry in Bioelectromagnetic, edited by M. S. Markov. Boca Raton: CRC Press, 2017, pp. 233–268.

    Chapter  Google Scholar 

  42. Puc, M., S. Čorović, K. Flisar, M. Petkovšek, J. Nastran, and D. Miklavčič. Techniques of signal generation required for electropermeabilization. Survey of electropermeabilization devices. Bioelectrochemistry 2004. https://doi.org/10.1016/j.bioelechem.2004.04.001.

    Article  PubMed  Google Scholar 

  43. Pucihar, G., J. Krmelj, M. Reberšek, T. B. Napotnik, and D. Miklavčič. Equivalent pulse parameters for electroporation. IEEE Trans. Biomed. Eng. 58:3279–3288, 2011.

    Article  PubMed  Google Scholar 

  44. Pucihar, G., L. M. Mir, and D. Miklavčič. The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry 2002. https://doi.org/10.1016/s1567-5394(02)00116-0.

    Article  PubMed  Google Scholar 

  45. Raso, J., I. Alvarez, S. Condón, and F. J. Sala. Predicting inactivation of Salmonella senftenberg by pulsed electric fields. Innov. Food Sci. Emerg. Technol. 2000. https://doi.org/10.1016/s1466-8564(99)00005-3.

    Article  Google Scholar 

  46. Raso, J., W. Frey, G. Ferrari, G. Pataro, D. Knorr, J. Teissie, and D. Miklavčič. Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov. Food Sci. Emerg. Technol. 2016. https://doi.org/10.1016/j.ifset.2016.08.003.

    Article  Google Scholar 

  47. Reberšek, M., and D. Miklavčič. Concepts of electroporation pulse generation and overview of electric pulse generators for cell and tissue electroporation. Boca Raton: Taylor & Francis, pp. 343–360, 2010. https://doi.org/10.1201/ebk1439819067-21.

  48. Reberšek, M., D. Miklavčič, C. Bertacchini, and M. Sack. Cell membrane electroporation—part 3: the equipment. IEEE Electr. Insul. Mag. 30:8–18, 2014.

    Article  Google Scholar 

  49. Robins, E. V. Immunosuppression of the burned patient. Crit. Care Nurs. Clin. N. Am. 1:767–774, 1989.

    Article  CAS  Google Scholar 

  50. Rubinsky, L., B. Patrick, P. Mikus, and B. Rubinsky. Germicide wound pad with active, in situ, electrolytically produced hypochlorous acid. Biomed. Microdevices 18:1–10, 2016.

    Article  CAS  Google Scholar 

  51. Sack, M., M. Hochberg, and G. Mueller. Synchronized switching and active clamping of IGBT switches in a simple marx generator. In PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2016.

  52. Sack, M., J. Ruf, M. Hochberg, D. Herzog, and G. Mueller. A device for combined thermal and pulsed electric field treatment of food. In 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 2017. https://doi.org/10.1109/optim.2017.7974943.

  53. Sano, M. B., C. B. Arena, K. R. Bittleman, M. R. Dewitt, H. J. Cho, C. S. Szot, D. Saur, J. M. Cissell, J. Robertson, Y. W. Lee, and R. V. Davalos. Bursts of bipolar microsecond pulses inhibit tumor growth. Sci. Rep. 2015. https://doi.org/10.1038/srep14999.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sano, M. B., C. C. Fesmire, M. R. Dewitt, and L. Xing. Burst and continuous high frequency irreversible electroporation protocols evaluated in a 3D tumor model. Phys. Med. Biol. 2018. https://doi.org/10.1088/1361-6560/aacb62.

    Article  PubMed  Google Scholar 

  55. Spugnini, E. P., G. Arancia, A. Porrello, M. Colone, G. Formisano, A. Stringaro, G. Citro, and A. Molinari. Ultrastructural modifications of cell membranes induced by “electroporation” on melanoma xenografts. Microsc. Res. Tech. 70:1041–1050, 2007.

    Article  PubMed  Google Scholar 

  56. Stankevič, V., V. Novickij, S. Balevičius, N. Žurauskiene, A. Baškys, A. Dervinis, and V. Bleizgys. Electroporation system generating wide range square-wave pulses for biological applications. In 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), Rotterdam, The Netherlands, 2013. https://doi.org/10.1109/biocas.2013.6679633.

  57. Thomson, K. R., W. Cheung, S. J. Ellis, D. Federman, H. Kavnoudias, D. Loader-Oliver, S. Roberts, P. Evans, C. Ball, and A. Haydon. Investigation of the safety of irreversible electroporation in humans. J. Vasc. Interv. Radiol. 22:611–621, 2011.

    Article  PubMed  Google Scholar 

  58. Toepfl, S., V. Heinz, and D. Knorr. High intensity pulsed electric fields applied for food preservation. Chem. Eng. Process. Process Intensif. 2007. https://doi.org/10.1016/j.cep.2006.07.011.

    Article  Google Scholar 

  59. Turner, K. H., J. Everett, U. Trivedi, K. P. Rumbaugh, and M. Whiteley. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet. 2014. https://doi.org/10.1371/journal.pgen.1004518.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Van Mellaert, L., M. Shahrooei, D. Hofmans, and J. Van Eldere. Immunoprophylaxis and immunotherapy of Staphylococcus epidermidis infections: challenges and prospects. Expert Rev. Vaccines 11(3):319–334, 2012.

    Article  CAS  PubMed  Google Scholar 

  61. Vernhes, M. C., P. A. Cabanes, and J. Teissie. Chinese hamster ovary cells sensitivity to localized electrical stresses. Bioelectrochem. Bioenerg. 1999. https://doi.org/10.1016/s0302-4598(98)00239-6.

    Article  PubMed  Google Scholar 

  62. Vernier, P. T., Y. Sun, M. J. Ziegler, and M. A. Gundersen. Nanoelectropulse-driven membrane perturbation and permeabilization. BMC Cell Biol. 2006. https://doi.org/10.1109/bmn.2006.330927.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Weaver, J. C., and Y. A. Chizmadzhev. Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41:135–160, 1996.

    Article  CAS  Google Scholar 

  64. Wimmer, T., G. Srimathveeravalli, M. Silk, S. Monette, N. Gutta, M. Maybody, J. P. Erinjery, J. A. Coleman, S. B. Solomon, and C. T. Sofocleous. Feasibility of a modified biopsy needle for irreversible electroporation ablation and periprocedural tissue sampling. Technol. Cancer Res. Treat. 2016. https://doi.org/10.1177/1533034615608739.

    Article  PubMed  Google Scholar 

  65. Wouters, P. C., N. Dutreux, J. P. Smelt, and H. L. Lelieveld. Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl. Environ. Microbiol. 65:5364–5371, 1999.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yao, F., and E. Eriksson. Gene therapy in wound repair and regeneration. Wound Repair Regen. 8:443–451, 2000.

    Article  CAS  PubMed  Google Scholar 

  67. Yarmush, M. L., A. Golberg, G. Serša, T. Kotnik, and D. Miklavčič. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16:295–320, 2014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Bio-National USA-Israel Science Foundation (BSF) for the support of this study.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Golberg.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, A.E., Levkov, K., Usta, O.B. et al. IGBT-Based Pulsed Electric Fields Generator for Disinfection: Design and In Vitro Studies on Pseudomonas aeruginosa. Ann Biomed Eng 47, 1314–1325 (2019). https://doi.org/10.1007/s10439-019-02225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02225-0

Keywords

Navigation