Annals of Biomedical Engineering

, Volume 46, Issue 7, pp 940–946 | Cite as

Performance Assessment of a Radiofrequency Powered Guidewire for Crossing Peripheral Arterial Occlusions Based on Lesion Morphology

  • Mohammad A. Tavallaei
  • James J. Zhou
  • Trisha L. Roy
  • Graham A. Wright


Endovascular wires and devices for peripheral arterial disease therapy have evolved greatly, yet failure rates of these procedures remain high. Information on lesion composition may inform device selection to improve the success rates of these procedures. This paper, presents an approach for informed guidewire selection. The objective of this study is to quantitatively assess the performance of a radiofrequency powered guidewire in the crossing of various morphology types of peripheral chronic total occlusions. Samples taken from amputated patient limbs are characterized by magnetic resonance imaging. Using a customized catheter test station, the performance of a radiofrequency powered guidewire in puncturing these lesions is compared to a conventional guidewire, and to itself when not powered. The analysis includes quantitative and statistical comparisons of the puncture forces experienced by the different guidewires in “hard” vs. “soft” lesions as well as qualitative assessment of deflections, buckling and puncture success of the wires. Results indicate that the use of radiofrequency ablation significantly reduces the required puncture force, reduced events of buckling and deflection, and resulted in a significantly higher puncture success rate.


Endovascular interventions Guidewires Magnetic resonance imaging Chronic total occlusions Radio frequency ablation Peripheral arterial disease 



The authors would like to acknowledge the help and support of Dr. Andrew Dueck, Dr. Wendy Oakden, and Dr. Xiuling Qi. This research was supported by Canadian Institute of Health Research and Baylis Medical.


  1. 1.
    Abou-Marie, R., T. Juzkiw, G. Davies, M. Luk, R. Leung, M. Mosley, C. Wong, and K. Albert. Electrosurgical device for creating a channel through a region of tissue and methods of use thereof. Patent: US9510900, 2010.Google Scholar
  2. 2.
    Adam, D. J., J. D. Beard, T. Cleveland, J. Bell, A. W. Bradbury, J. F. Forbes, F. G. R. Fowkes, and I. Gillepsie. C. V Ruckley, G. Raab, H. Storkey, and BASIL trial participants. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 366:1925–1934, 2005.CrossRefPubMedGoogle Scholar
  3. 3.
    Charitakis, K., and D. N. Feldman. Atherectomy for lower extremity intervention: why, when, and which device? pp. 1–7, 2016.
  4. 4.
    Cronenwett, J., and K. Johnston. Rutherford’s vascular surgery. Amsterdam: Elsevier Health Sciences, 2014.Google Scholar
  5. 5.
    Davis, R. M., E. David, R. A. Pugash, and G. Annamalai. Radiofrequency guide wire recanalization of venous occlusions in patients with malignant superior vena cava syndrome. Cardiovasc. Interv. Radiol. 35:676–679, 2012.CrossRefGoogle Scholar
  6. 6.
    Douglas, D. H., and T. K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Class. Cartogr. Reflections Influ. Artic. from Cartogr. 10:15–28, 2011.Google Scholar
  7. 7.
    Go, A. S., et al. Heart disease and stroke statistics—2014 update. Circulation 129:e28–e292, 2014.CrossRefPubMedGoogle Scholar
  8. 8.
    Goldsweig, A. M., F. Hasan, and C. Mena. Tools of the trade: adjunctive tools for lesion crossing in critical limb ischemia. Med. Equip. Insights 2015. Scholar
  9. 9.
    Golomb, B. A. Peripheral arterial disease: morbidity and mortality implications. Circulation 114:688–699, 2006.CrossRefPubMedGoogle Scholar
  10. 10.
    Harrison, G. J., T. V. How, S. R. Vallabhaneni, J. A. Brennan, R. K. Fisher, J. B. Naik, and R. G. McWilliams. Guidewire stiffness: what’s in a name? J. Endovasc. Ther. 18:797–801, 2011.CrossRefPubMedGoogle Scholar
  11. 11.
    Jens, S., A. P. Conijn, F. A. Frans, M. B. B. Nieuwenhuis, R. Met, M. J. W. Koelemay, D. A. Legemate, S. Bipat, and J. A. Reekers. Outcomes of infrainguinal revascularizations with endovascular first strategy in critical limb ischemia. Cardiovasc. Interv. Radiol. 38:552–559, 2015.CrossRefGoogle Scholar
  12. 12.
    Katib, N., S. D. Thomas, A. F. Lennox, J.-L. Yang, and R. L. Varcoe. An endovascular-first approach to the treatment of critical limb ischemia results in superior limb salvage rates. J. Endovasc. Ther. 22:473–481, 2015.CrossRefPubMedGoogle Scholar
  13. 13.
    Lammer, J., E. Pilger, M. Decrinis, F. Quehenberger, G. E. Klein, and G. Stark. Pulsed excimer laser versus continuous-wave Nd:YAG laser versus conventional angioplasty of peripheral arterial occlusions: prospective, controlled, randomised trial. Lancet (London, England) 340:1183–1188, 1992.CrossRefGoogle Scholar
  14. 14.
    Murarka, S., and R. R. Heuser. Chronic total occlusions in peripheral vasculature: techniques and devices. Expert Rev. Cardiovasc. Ther. 7:1283–1295, 2009.CrossRefPubMedGoogle Scholar
  15. 15.
    Poncyliusz, W., A. Falkowski, and A. Walecka. Does use of hydrophilic guidewires significantly improve technical success rates of peripheral PTA? Med. Sci. Monit. 10(Suppl 3):55–57, 2004.PubMedGoogle Scholar
  16. 16.
    Roy, T. L., H.-J. Chen, A. D. Dueck, and G. A. Wright. Magnetic resonance imaging characteristics of lesions relate to the difficulty of peripheral arterial endovascular procedures. J. Vasc. Surg. 2017. Scholar
  17. 17.
    Roy, T., A. D. Dueck, and G. A. Wright. Peripheral endovascular interventions in the era of precision medicine: tying wire, drug, and device selection to plaque morphology. J. Endovasc. Ther. 23:751–761, 2016.CrossRefPubMedGoogle Scholar
  18. 18.
    Roy, T., G. Liu, X. Qi, A. Dueck, and G. A. Wright. MRI characterization of peripheral arterial chronic total occlusions at 7 Tesla with microCT and histologic validation. J. Cardiovasc. Magn. Reson. 17:P404, 2015.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Roy, T., G. Liu, N. Shaikh, A. D. Dueck, and G. A. Wright. Magnetic resonance imaging as a predictor of forces required to cross peripheral arterial lesions with a guidewire. J. Vasc. Surg. 64:1542, 2016.CrossRefGoogle Scholar
  20. 20.
    Roy, T., G. Liu, N. Shaikh, A. D. Dueck, and G. A. Wright. Puncturing plaques: relating MRI characteristics of peripheral artery lesions to guidewire puncture forces. J. Endovasc. Ther. 24:35–46, 2017.CrossRefPubMedGoogle Scholar
  21. 21.
    Sarkissian, C., E. Korman, K. Hendlin, and M. Monga. Systematic evaluation of hybrid guidewires: shaft stiffness, lubricity, and tip configuration. Urology 79:513–517, 2012.CrossRefPubMedGoogle Scholar
  22. 22.
    Schummer, W., S. Trommer, F. Kleemann, and C. Schummer. Mechanical properties of Seldinger guidewires. J. Vasc. Access 15:507–513, 2014.CrossRefPubMedGoogle Scholar
  23. 23.
    Shammas, N. An overview of optimal endovascular strategy in treating the femoropopliteal artery: mechanical, biological, and procedural factors. Int. J. Angiol. 22:001–008, 2013.CrossRefGoogle Scholar
  24. 24.
    Tapping, C. R., I. F. Uri, S. Dixon, M. J. Bratby, S. Anthony, and R. Uberoi. Successful recanalization of a longstanding right common iliac artery occlusion with a radiofrequency guidewire. Cardiovasc. Interv. Radiol. 35:1221–1225, 2012.CrossRefGoogle Scholar
  25. 25.
    Tingerides, C., G. Annamalai, J. M. Comin, S. Kaduri, R. Pugash, and E. David. Percutaneous recanalization of iliac artery occlusions by radiofrequency perforation: initial experience. J. Vasc. Interv. Radiol. 27(1):68–72, 2016.CrossRefPubMedGoogle Scholar
  26. 26.
    Torricelli, F. C. M., S. De, C. Sarkissian, and M. Monga. Hydrophilic guidewires: evaluation and comparison of their properties and safety. Urology 82:1182–1186, 2013.CrossRefPubMedGoogle Scholar
  27. 27.
    White, C. J., and W. A. Gray. Endovascular therapies for peripheral arterial disease. Circulation 116:2203–2215, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Medical Biophysics, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoCanada
  2. 2.Sunnybrook Health Sciences CentreTorontoCanada
  3. 3.University of WaterlooWaterlooCanada
  4. 4.Division of Vascular Surgery, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoCanada
  5. 5.Sunnybrook Health Sciences CentreTorontoCanada

Personalised recommendations