Hyperelastic Mechanical Properties of Ex Vivo Normal and Intrauterine Growth Restricted Placenta

  • Shier Nee Saw
  • Jess Yi Ru Low
  • May Han Huang Ong
  • Yu Wei Poh
  • Citra Nurfarah Zaini Mattar
  • Arijit Biswas
  • Choon Hwai Yap
Article

Abstract

Intrauterine Growth Restriction (IUGR) is a serious and prevalent pregnancy complication that is due to placental insufficiency and IUGR babies suffer significantly higher risks of mortality and morbidity. Current detection rate for IUGR is generally poor and thus an alternative diagnostic tool is needed to improve the IUGR detection. Elastography, a non-invasive method that measures the tissue stiffness, has been proposed as one such technique. However, to date, we have limited information on the mechanical properties of IUGR placenta. In this study, we investigated the mechanical properties of normal and IUGR placentae and prescribed a suitable hyperelastic model to describe their mechanical behaviors. A total of 46 normal and 43 IUGR placenta samples were investigated. Results showed that placenta samples were isotropic, but had a high spatial variability of stiffness. The samples also had significant viscoelasticity. IUGR placenta was observed to be slightly stiffer than normal placenta but the difference was significant only at compression rate of 0.25 Hz and with 20% compression depth. Three simple hyperelastic models—Yeoh, Ogden and Fung models, were found to be able to fit the experimentally measured mechanical behaviors, and Fung model performed slightly better. These results may be useful for optimizing placenta elastography for the detection of IUGR.

Keywords

Placenta mechanical properties Intrauterine growth restriction Fetal growth restriction 3D hyperelastic model Uniaxial mechanical testing 

Notes

Acknowledgments

This research was supported by the National University of Singapore Young Investigator Award 2015 (PI: Yap) and the Ministry of Education of Singapore Academic Research Fund Tier 1 Grant entitled “Placenta Blood Oxygen Monitor for Intrauterine Growth Restriction Pregnancies (PI: Yap). We would like to express our gratitude to Cecille Arquillo Laureano, Cynthia Pamela Zapata Tagarino, Maylene Zipagan and other staff members from Obstetrics & Gynecology Department at National University Hospital for their assistance with patient eligibility and tissue procurement.

Conflict of interest

All authors have no conflict of interest to declare.

Supplementary material

10439_2018_2019_MOESM1_ESM.pdf (75 kb)
Supplementary material 1 (PDF 75 kb)

References

  1. 1.
    American College of Obstetricians and Gynecologists. ACOG Practice bulletin no. 134: fetal growth restriction. Obstet. Gynecol. 121:1122–1133, 2013.CrossRefGoogle Scholar
  2. 2.
    Barut, F., A. Barut, B. D. Gun, N. O. Kandemir, M. I. Harma, M. Harma, E. Aktunc, and S. O. Ozdamar. Intrauterine growth restriction and placental angiogenesis. Diagn. Pathol. 5:24, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Buehren, M. Differential Evolution. MATLAB Central File Exchange, 2017. https://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution.
  4. 4.
    Cantisani, V., H. Grazhdani, E. Drakonaki, V. D’Andrea, M. Di Segni, E. Kaleshi, F. Calliada, C. Catalano, A. Redler, and L. Brunese. Strain US elastography for the characterization of thyroid nodules: advantages and limitation. Int. J. Endocrinol. 2015.  https://doi.org/10.1155/2015/908575.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Chuong, C. J., and Y. C. Fung. Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105:268–274, 1983.CrossRefPubMedGoogle Scholar
  6. 6.
    Cimsit, C., T. Yoldemir, and I. N. Akpinar. Strain elastography in placental dysfunction: placental elasticity differences in normal and preeclamptic pregnancies in the second trimester. Archiv. Gynecol. Obstet. 2014.  https://doi.org/10.1007/s00404-014-3479-y.Google Scholar
  7. 7.
    Durhan, G., H. Unverdi, C. Deveci, M. Buyuksireci, J. Karakaya, T. Degirmenci, A. Bayrak, P. Kosar, S. Hucumenoglu, and Y. Ergun. Placental Elasticity and histopathological findings in normal and intra-uterine growth restriction pregnancies assessed with strain elastography in ex vivo placenta. Ultrasound Med. Biol. 43:111–118, 2017.CrossRefPubMedGoogle Scholar
  8. 8.
    Goenezen, S., J.-F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai. Linear and nonlinear elastic modulus imaging: an application to breast cancer diagnosis. IEEE Trans. Med. Imaging. 31:1628–1637, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hall, T. J., P. E. Barboneg, A. A. Oberai, J. Jiang, J.-F. Dord, S. Goenezen, and T. G. Fisher. Recent results in nonlinear strain and modulus imaging. Curr. Med. Imaging Rev. 7:313–327, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Harding, K., S. Evans, and J. Newnham. Screening for the small fetus: a study of the relative efficacies of ultrasound biometry and symphysiofundal height. Aust. N. Z. J. Obstet. Gynaecol. 35:160–164, 1995.CrossRefPubMedGoogle Scholar
  11. 11.
    Hu, J., K. D. Klinich, C. S. Miller, G. Nazmi, M. D. Pearlman, L. W. Schneider, and J. D. Rupp. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models. J. Biomech. 42:2528–2534, 2009.CrossRefPubMedGoogle Scholar
  12. 12.
    Langheinrich, A., S. Vorman, J. Seidenstücker, M. Kampschulte, R. Bohle, J. Wienhard, and M. Zygmunt. Quantitative 3D micro-CT imaging of the human feto-placental vasculature in intrauterine growth restriction. Placenta. 29:937–941, 2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Lau, J. S., S. N. Saw, M. L. Buist, A. Biswas, C. N. Z. Mattar, and C. H. Yap. Mechanical testing and non-linear viscoelastic modelling of the human placenta in normal and growth restricted pregnancies. J. Biomech. 49:173–184, 2016.CrossRefPubMedGoogle Scholar
  14. 14.
    Lausman, A., F. P. McCarthy, M. Walker, and J. Kingdom. Screening, diagnosis, and management of intrauterine growth restriction. J. Obstet. Gynaecol. Can. 34:17–28, 2012.CrossRefPubMedGoogle Scholar
  15. 15.
    Lindqvist, P. G., and J. Molin. Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome? Ultrasound Obstet. Gynecol. 25:258–264, 2005.CrossRefPubMedGoogle Scholar
  16. 16.
    Manoogian, S. J., J. A. Bisplinghoff, C. McNally, A. R. Kemper, A. C. Santago, and S. M. Duma. Effect of strain rate on the tensile material properties of human placenta. J. Biomech. Eng. 131:091008, 2009.CrossRefPubMedGoogle Scholar
  17. 17.
    Mathews, T. J., and M. F. MacDorman. Infant mortality statistics from the 2007 period linked birth/infant death data set. Natl. Vital Stat. Rep. 59:1–30, 2011.Google Scholar
  18. 18.
    Oberai, A. A., N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang. Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility. Phys. Med. Biol. 54:1191–1207, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ogden R. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1972, pp. 565–584.Google Scholar
  20. 20.
    Ophir, J., S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese. Elastography: imaging the elastic properties of soft tissues with ultrasound. J. Med. Ultrason. 29:155, 2002.CrossRefGoogle Scholar
  21. 21.
    Ophir, J., I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging. 13:111–134, 1991.CrossRefPubMedGoogle Scholar
  22. 22.
    Pavan, T. Z., E. L. Madsen, G. R. Frank, A. A. O. Carneiro, and T. J. Hall. Nonlinear elastic behavior of phantom materials for elastography. Phys. Med. Biol. 55:2679–2692, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Peyter, A.-C., F. Delhaes, D. Baud, Y. Vial, G. Diaceri, S. Menétrey, P. Hohlfeld, and J.-F. Tolsa. Intrauterine growth restriction is associated with structural alterations in human umbilical cord and decreased nitric oxide-induced relaxation of umbilical vein. Placenta. 35:891–899, 2014.CrossRefPubMedGoogle Scholar
  24. 24.
    Platz, E., and R. Newman. Diagnosis of IUGR: traditional biometry. Semin. Perinatol. 32:140–147, 2008.CrossRefPubMedGoogle Scholar
  25. 25.
    Sankaran, S., and P. M. Kyle. Aetiology and pathogenesis of IUGR. Best Pract. Res. Clin. Obstet. Gynaecol. 23:765–777, 2009.CrossRefPubMedGoogle Scholar
  26. 26.
    Sati, L., A. Y. Demir, L. Sarikcioglu, and R. Demir. Arrangement of collagen fibers in human placental stem villi. Acta Histochem. 110:371–379, 2008.CrossRefPubMedGoogle Scholar
  27. 27.
    Saw, S. N., C. Dawn, A. Biswas, C. N. Z. Mattar, and C. H. Yap. Characterization of the in vivo wall shear stress environment of human fetus umbilical arteries and veins. Biomech. Model. Mechanobiol. 16:197–211, 2017.CrossRefPubMedGoogle Scholar
  28. 28.
    Saw, S. N., J. Y. R. Low, C. N. Z. Mattar, A. Biswas, L. Chen, and C. H. Yap. Motorizing and optimizing ultrasound strain elastography for detection of intrauterine growth restriction pregnancies. Ultrasound Med. Biol. 44:532–543, 2018.CrossRefPubMedGoogle Scholar
  29. 29.
    Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9:671–675, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Slator, P. J., J. Hutter, L. McCabe, A. D. S. Gomes, A. N. Price, E. Panagiotaki, M. A. Rutherford, J. V. Hajnal, and D. C. Alexander. Quantifying placental microcirculation and microstructure with anisotropic IVIM models. Placenta. 57:290–291, 2017.CrossRefGoogle Scholar
  31. 31.
    Varghese, T., J. Ophir, and T. A. Krouskop. Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms. Ultrasound Med. Biol. 26:839–851, 2000.CrossRefPubMedGoogle Scholar
  32. 32.
    Villar, J., L. Cheikh Ismail, C. Victora, E. Ohuma, E. Bertino, D. Altman, A. Lambert, A. Papageorghiou, M. Carvalho, and Y. Jaffer. International fetal and newborn growth consortium for the 21st century (INTERGROWTH-21st). International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st project. Lancet. 384:857–868, 2014.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang, Z. G., Y. Liu, G. Wang, and L. Z. Sun. Elastography method for reconstruction of nonlinear breast tissue properties. Int. J. Biomed. Imaging. 2009:406854, 2009.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang, Y., and S. Zhao. Structure of the placenta. In: Vascular Biology of the Placenta, edited by Y. Wang. San Rafael: Morgan & Claypool Life Sciences, 2010.Google Scholar
  35. 35.
    Warsof, S. L., D. J. Cooper, D. Little, and S. Campbell. Routine ultrasound screening for antenatal detection of intrauterine growth retardation. Obstet. Gynecol. 67:33–39, 1986.PubMedGoogle Scholar
  36. 36.
    Weed, B. C., A. Borazjani, S. S. Patnaik, R. Prabhu, F. Horstemeyer, P. L. Ryan, T. F. Laki, N. W. Lakiesha, and J. Liao. Stress state and strain rate dependence of the human placenta. Ann. Biomed. Eng. 40:2255–2265, 2012.CrossRefPubMedGoogle Scholar
  37. 37.
    Yeoh, O. H. Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66:754–771, 1993.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Obstetrics and Gynecology, Yong Loo Lin School of MedicineNational University of Singapore, National University Health SystemsSingaporeSingapore

Personalised recommendations