Skip to main content

Advertisement

Log in

Hyperelastic Mechanical Properties of Ex Vivo Normal and Intrauterine Growth Restricted Placenta

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intrauterine Growth Restriction (IUGR) is a serious and prevalent pregnancy complication that is due to placental insufficiency and IUGR babies suffer significantly higher risks of mortality and morbidity. Current detection rate for IUGR is generally poor and thus an alternative diagnostic tool is needed to improve the IUGR detection. Elastography, a non-invasive method that measures the tissue stiffness, has been proposed as one such technique. However, to date, we have limited information on the mechanical properties of IUGR placenta. In this study, we investigated the mechanical properties of normal and IUGR placentae and prescribed a suitable hyperelastic model to describe their mechanical behaviors. A total of 46 normal and 43 IUGR placenta samples were investigated. Results showed that placenta samples were isotropic, but had a high spatial variability of stiffness. The samples also had significant viscoelasticity. IUGR placenta was observed to be slightly stiffer than normal placenta but the difference was significant only at compression rate of 0.25 Hz and with 20% compression depth. Three simple hyperelastic models—Yeoh, Ogden and Fung models, were found to be able to fit the experimentally measured mechanical behaviors, and Fung model performed slightly better. These results may be useful for optimizing placenta elastography for the detection of IUGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. American College of Obstetricians and Gynecologists. ACOG Practice bulletin no. 134: fetal growth restriction. Obstet. Gynecol. 121:1122–1133, 2013.

    Article  Google Scholar 

  2. Barut, F., A. Barut, B. D. Gun, N. O. Kandemir, M. I. Harma, M. Harma, E. Aktunc, and S. O. Ozdamar. Intrauterine growth restriction and placental angiogenesis. Diagn. Pathol. 5:24, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Buehren, M. Differential Evolution. MATLAB Central File Exchange, 2017. https://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution.

  4. Cantisani, V., H. Grazhdani, E. Drakonaki, V. D’Andrea, M. Di Segni, E. Kaleshi, F. Calliada, C. Catalano, A. Redler, and L. Brunese. Strain US elastography for the characterization of thyroid nodules: advantages and limitation. Int. J. Endocrinol. 2015. https://doi.org/10.1155/2015/908575.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chuong, C. J., and Y. C. Fung. Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105:268–274, 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Cimsit, C., T. Yoldemir, and I. N. Akpinar. Strain elastography in placental dysfunction: placental elasticity differences in normal and preeclamptic pregnancies in the second trimester. Archiv. Gynecol. Obstet. 2014. https://doi.org/10.1007/s00404-014-3479-y.

    Article  Google Scholar 

  7. Durhan, G., H. Unverdi, C. Deveci, M. Buyuksireci, J. Karakaya, T. Degirmenci, A. Bayrak, P. Kosar, S. Hucumenoglu, and Y. Ergun. Placental Elasticity and histopathological findings in normal and intra-uterine growth restriction pregnancies assessed with strain elastography in ex vivo placenta. Ultrasound Med. Biol. 43:111–118, 2017.

    Article  PubMed  Google Scholar 

  8. Goenezen, S., J.-F. Dord, Z. Sink, P. E. Barbone, J. Jiang, T. J. Hall, and A. A. Oberai. Linear and nonlinear elastic modulus imaging: an application to breast cancer diagnosis. IEEE Trans. Med. Imaging. 31:1628–1637, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hall, T. J., P. E. Barboneg, A. A. Oberai, J. Jiang, J.-F. Dord, S. Goenezen, and T. G. Fisher. Recent results in nonlinear strain and modulus imaging. Curr. Med. Imaging Rev. 7:313–327, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harding, K., S. Evans, and J. Newnham. Screening for the small fetus: a study of the relative efficacies of ultrasound biometry and symphysiofundal height. Aust. N. Z. J. Obstet. Gynaecol. 35:160–164, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Hu, J., K. D. Klinich, C. S. Miller, G. Nazmi, M. D. Pearlman, L. W. Schneider, and J. D. Rupp. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models. J. Biomech. 42:2528–2534, 2009.

    Article  PubMed  Google Scholar 

  12. Langheinrich, A., S. Vorman, J. Seidenstücker, M. Kampschulte, R. Bohle, J. Wienhard, and M. Zygmunt. Quantitative 3D micro-CT imaging of the human feto-placental vasculature in intrauterine growth restriction. Placenta. 29:937–941, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Lau, J. S., S. N. Saw, M. L. Buist, A. Biswas, C. N. Z. Mattar, and C. H. Yap. Mechanical testing and non-linear viscoelastic modelling of the human placenta in normal and growth restricted pregnancies. J. Biomech. 49:173–184, 2016.

    Article  PubMed  Google Scholar 

  14. Lausman, A., F. P. McCarthy, M. Walker, and J. Kingdom. Screening, diagnosis, and management of intrauterine growth restriction. J. Obstet. Gynaecol. Can. 34:17–28, 2012.

    Article  PubMed  Google Scholar 

  15. Lindqvist, P. G., and J. Molin. Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome? Ultrasound Obstet. Gynecol. 25:258–264, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Manoogian, S. J., J. A. Bisplinghoff, C. McNally, A. R. Kemper, A. C. Santago, and S. M. Duma. Effect of strain rate on the tensile material properties of human placenta. J. Biomech. Eng. 131:091008, 2009.

    Article  PubMed  Google Scholar 

  17. Mathews, T. J., and M. F. MacDorman. Infant mortality statistics from the 2007 period linked birth/infant death data set. Natl. Vital Stat. Rep. 59:1–30, 2011.

    CAS  PubMed  Google Scholar 

  18. Oberai, A. A., N. H. Gokhale, S. Goenezen, P. E. Barbone, T. J. Hall, A. M. Sommer, and J. Jiang. Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility. Phys. Med. Biol. 54:1191–1207, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ogden R. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1972, pp. 565–584.

  20. Ophir, J., S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese. Elastography: imaging the elastic properties of soft tissues with ultrasound. J. Med. Ultrason. 29:155, 2002.

    Article  Google Scholar 

  21. Ophir, J., I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging. 13:111–134, 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Pavan, T. Z., E. L. Madsen, G. R. Frank, A. A. O. Carneiro, and T. J. Hall. Nonlinear elastic behavior of phantom materials for elastography. Phys. Med. Biol. 55:2679–2692, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Peyter, A.-C., F. Delhaes, D. Baud, Y. Vial, G. Diaceri, S. Menétrey, P. Hohlfeld, and J.-F. Tolsa. Intrauterine growth restriction is associated with structural alterations in human umbilical cord and decreased nitric oxide-induced relaxation of umbilical vein. Placenta. 35:891–899, 2014.

    Article  PubMed  Google Scholar 

  24. Platz, E., and R. Newman. Diagnosis of IUGR: traditional biometry. Semin. Perinatol. 32:140–147, 2008.

    Article  PubMed  Google Scholar 

  25. Sankaran, S., and P. M. Kyle. Aetiology and pathogenesis of IUGR. Best Pract. Res. Clin. Obstet. Gynaecol. 23:765–777, 2009.

    Article  PubMed  Google Scholar 

  26. Sati, L., A. Y. Demir, L. Sarikcioglu, and R. Demir. Arrangement of collagen fibers in human placental stem villi. Acta Histochem. 110:371–379, 2008.

    Article  PubMed  Google Scholar 

  27. Saw, S. N., C. Dawn, A. Biswas, C. N. Z. Mattar, and C. H. Yap. Characterization of the in vivo wall shear stress environment of human fetus umbilical arteries and veins. Biomech. Model. Mechanobiol. 16:197–211, 2017.

    Article  PubMed  Google Scholar 

  28. Saw, S. N., J. Y. R. Low, C. N. Z. Mattar, A. Biswas, L. Chen, and C. H. Yap. Motorizing and optimizing ultrasound strain elastography for detection of intrauterine growth restriction pregnancies. Ultrasound Med. Biol. 44:532–543, 2018.

    Article  PubMed  Google Scholar 

  29. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9:671–675, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Slator, P. J., J. Hutter, L. McCabe, A. D. S. Gomes, A. N. Price, E. Panagiotaki, M. A. Rutherford, J. V. Hajnal, and D. C. Alexander. Quantifying placental microcirculation and microstructure with anisotropic IVIM models. Placenta. 57:290–291, 2017.

    Article  Google Scholar 

  31. Varghese, T., J. Ophir, and T. A. Krouskop. Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms. Ultrasound Med. Biol. 26:839–851, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Villar, J., L. Cheikh Ismail, C. Victora, E. Ohuma, E. Bertino, D. Altman, A. Lambert, A. Papageorghiou, M. Carvalho, and Y. Jaffer. International fetal and newborn growth consortium for the 21st century (INTERGROWTH-21st). International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st project. Lancet. 384:857–868, 2014.

    Article  PubMed  Google Scholar 

  33. Wang, Z. G., Y. Liu, G. Wang, and L. Z. Sun. Elastography method for reconstruction of nonlinear breast tissue properties. Int. J. Biomed. Imaging. 2009:406854, 2009.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang, Y., and S. Zhao. Structure of the placenta. In: Vascular Biology of the Placenta, edited by Y. Wang. San Rafael: Morgan & Claypool Life Sciences, 2010.

    Google Scholar 

  35. Warsof, S. L., D. J. Cooper, D. Little, and S. Campbell. Routine ultrasound screening for antenatal detection of intrauterine growth retardation. Obstet. Gynecol. 67:33–39, 1986.

    PubMed  CAS  Google Scholar 

  36. Weed, B. C., A. Borazjani, S. S. Patnaik, R. Prabhu, F. Horstemeyer, P. L. Ryan, T. F. Laki, N. W. Lakiesha, and J. Liao. Stress state and strain rate dependence of the human placenta. Ann. Biomed. Eng. 40:2255–2265, 2012.

    Article  PubMed  Google Scholar 

  37. Yeoh, O. H. Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66:754–771, 1993.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National University of Singapore Young Investigator Award 2015 (PI: Yap) and the Ministry of Education of Singapore Academic Research Fund Tier 1 Grant entitled “Placenta Blood Oxygen Monitor for Intrauterine Growth Restriction Pregnancies (PI: Yap). We would like to express our gratitude to Cecille Arquillo Laureano, Cynthia Pamela Zapata Tagarino, Maylene Zipagan and other staff members from Obstetrics & Gynecology Department at National University Hospital for their assistance with patient eligibility and tissue procurement.

Conflict of interest

All authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon Hwai Yap.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saw, S.N., Low, J.Y.R., Ong, M.H.H. et al. Hyperelastic Mechanical Properties of Ex Vivo Normal and Intrauterine Growth Restricted Placenta. Ann Biomed Eng 46, 1066–1077 (2018). https://doi.org/10.1007/s10439-018-2019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2019-5

Keywords

Navigation