Annals of Biomedical Engineering

, Volume 46, Issue 7, pp 947–959 | Cite as

Assessment of Ablative Therapies in Swine: Response of Respiratory Diaphragm to Varying Doses

  • Ashish Singal
  • Lars M. Mattison
  • Charles L. Soule
  • John R. Ballard
  • Eric N. Rudie
  • Erik N. K. Cressman
  • Paul A. Iaizzo


Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm’s properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm’s physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures. In this study, we analyzed physiologic and biomechanical properties of swine respiratory diaphragm muscle bundles when exposed to 5 ablative modalities. To assess physiologic properties, we performed in vitro tissue bath studies and measured changes in peak force and baseline force. To assess biomechanical properties, we performed uniaxial stress tests, measuring force–displacement responses, stress–strain characteristics, and avulsion forces. After treating the muscle bundles with all 5 ablative modalities, we observed dose-dependent sustained reductions in peak force and transient increases in baseline force—but no consistent dose-dependent biomechanical responses. These data provide novel insights into the effects of various ablative modalities on the respiratory diaphragm, insights that could enable improvements in ablative techniques and therapies.


Radiofrequency ablation Cryoablation Microwave ablation High-intensity focused ultrasound ablation Chemical ablation 



Baseline force


Chemical ablation




Hepatocellular carcinoma


High-intensity focused ultrasound


Microwave ablation


Peak force


Radiofrequency ablation



This study was supported by the Institute for Engineering in Medicine at the University of Minnesota, Medtronic, Minnesota Muscle Training Program Grant #2T32ST007612, and Minnesota Partnership for Biotechnology and Medical Genomics Grant #14.31. We gratefully acknowledge Mary Knatterud, Monica Mahre, and Dave Euler for reviewing the manuscript. Dr. Iaizzo has a research contract with Medtronic.

Supplementary material

10439_2018_2014_MOESM1_ESM.tif (1.8 mb)
Supplementary material 1 (TIFF 1865 kb)
10439_2018_2014_MOESM2_ESM.tif (2 mb)
Supplementary material 2 (TIFF 2003 kb)
10439_2018_2014_MOESM3_ESM.tif (1.9 mb)
Supplementary material 3 (TIFF 1954 kb)
10439_2018_2014_MOESM4_ESM.tif (1.8 mb)
Supplementary material 4 (TIFF 1887 kb)
10439_2018_2014_MOESM5_ESM.tif (1.9 mb)
Supplementary material 5 (TIFF 1983 kb)
10439_2018_2014_MOESM6_ESM.tif (1.9 mb)
Supplementary material 6 (TIFF 1966 kb)
10439_2018_2014_MOESM7_ESM.tif (1.5 mb)
Supplementary material 7 (TIFF 1550 kb)
10439_2018_2014_MOESM8_ESM.tif (1.9 mb)
Supplementary material 8 (TIFF 1902 kb)
10439_2018_2014_MOESM9_ESM.tif (766 kb)
Supplementary material 9 (TIFF 765 kb)
10439_2018_2014_MOESM10_ESM.tif (848 kb)
Supplementary material 10 (TIFF 848 kb)
10439_2018_2014_MOESM11_ESM.tif (748 kb)
Supplementary material 11 (TIFF 748 kb)
10439_2018_2014_MOESM12_ESM.tif (689 kb)
Supplementary material 12 (TIFF 689 kb)
10439_2018_2014_MOESM13_ESM.tif (940 kb)
Supplementary material 13 (TIFF 940 kb)
10439_2018_2014_MOESM14_ESM.tif (946 kb)
Supplementary material 14 (TIFF 946 kb)
10439_2018_2014_MOESM15_ESM.tif (956 kb)
Supplementary material 15 (TIFF 956 kb)
10439_2018_2014_MOESM16_ESM.tif (1 mb)
Supplementary material 16 (TIFF 1064 kb)
10439_2018_2014_MOESM17_ESM.pdf (132 kb)
Supplementary material 17 (PDF 132 kb)


  1. 1.
    Ahmed, M., and S. N. Goldberg. Image-guided tumor ablation: basic science. In: Tumor Ablation: Principles and Practice, edited by E. van Sonnenberg, W. McMullen, and L. Solbiati. New York: Springer, 2005, p. 24.Google Scholar
  2. 2.
    Berchtold, M. W., H. Brinkmeier, and M. Müntener. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol. Rev. 80:1215–1265, 2000.CrossRefPubMedGoogle Scholar
  3. 3.
    Bischof, J. C., and X. He. Thermal stability of proteins. Ann. N. Y. Acad. Sci. 12–33:2005, 1066.Google Scholar
  4. 4.
    Boutilier, R. G. Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol. 204(Pt. 158):3171–3181, 2001.PubMedGoogle Scholar
  5. 5.
    Brace, C. L. Microwave tissue ablation: biophysics, technology, and applications. Crit. Rev. Biomed. Eng. 38:65–78, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chow, M. J., and Y. Zhang. Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J. Surg. Res. 171:434–442, 2011.CrossRefPubMedGoogle Scholar
  7. 7.
    Chu, K. F., and D. E. Dupuy. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14:199–208, 2014.CrossRefPubMedGoogle Scholar
  8. 8.
    Downey, R. Anatomy of the normal diaphragm. Thorac. Surg. Clin. 21:273–279, 2011.CrossRefPubMedGoogle Scholar
  9. 9.
    Endo, M. Calcium-induced calcium release in skeletal muscle. Physiol. Rev. 89:1153–1176, 2009.CrossRefPubMedGoogle Scholar
  10. 10.
    Everett, 4th, T. H., S. Nath, C. Lynch, 3rd, J. M. Bech, J. G. Whayne, and D. E. Haines. Role of calcium in acute hyperthermic myocardial injury. J. Cardiovasc. Electrophysiol. 12:563–569, 2001.CrossRefPubMedGoogle Scholar
  11. 11.
    Haemmerich, D. Biophysics of radiofrequency ablation. Crit. Rev. Biomed. Eng. 38:53–63, 2010.CrossRefPubMedGoogle Scholar
  12. 12.
    Haines, D. E. Biophysics of radiofrequency lesion formation. In: Catheter Ablation of Cardiac Arrhythmias2nd, edited by S. K. S. Huang, and M. A. Wood. Philadelphia: Saunders, 2011, p. 3.Google Scholar
  13. 13.
    Head, H. W., G. D. Dodd, 3rd, N. C. Dalrymple, S. R. Prasad, F. M. El-Merhi, M. W. Freckleton, and L. G. Hubbard. Percutaneous radiofrequency ablation of hepatic tumors against the diaphragm: frequency of diaphragmatic injury. Radiology 243:877–884, 2007.CrossRefPubMedGoogle Scholar
  14. 14.
    Hiraki, T., H. Gobara, H. Fujiwara, H. Ishii, K. Tomita, M. Uka, S. Makimoto, and S. Kanazawa. Lung cancer ablation: complications. Semin. Intervent. Radiol. 30:169–175, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Iaizzo, P. A., and F. Lehmann-Horn. The in vitro determination of susceptibility to malignant hyperthermia. Muscle Nerve 12:184–190, 1989.CrossRefPubMedGoogle Scholar
  16. 16.
    Iaizzo, P. A., D. J. Wedel, and W. J. Gallagher. In vitro contracture testing for determination of susceptibility to malignant hyperthermia: a methodologic update. Mayo Clin. Proc. 66:998–1004, 1991.CrossRefPubMedGoogle Scholar
  17. 17.
    Kandarian, S. C., and T. P. White. Force deficit during the onset of muscle hypertrophy. J. Appl. Physiol. 67:2600–2607, 1989.CrossRefPubMedGoogle Scholar
  18. 18.
    Kato, T., T. Yamagami, T. Hirota, T. Matsumoto, R. Yoshimatsu, and T. Nishimura. Transpulmonary radiofrequency ablation for hepatocellular carcinoma under real-time computed tomography-fluoroscopic guidance. Hepatogastroenterology 55:1450–1453, 2008.PubMedGoogle Scholar
  19. 19.
    Keller, M. W. Arteriolar constriction in skeletal muscle during vascular stunning: role of mast cells. Am. J. Physiol. 272:H2154–2163, 1997.PubMedGoogle Scholar
  20. 20.
    Kjaer, M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 84:649–698, 2004.CrossRefPubMedGoogle Scholar
  21. 21.
    Lustgarten, D. L., D. Keane, and J. Ruskin. Cryothermal ablation: mechanism of tissue injury and current experience in the treatment of tachyarrhythmias. Prog. Cardiovasc. Dis. 41:481–498, 1999.CrossRefPubMedGoogle Scholar
  22. 22.
    Mori, T., K. Kawanaka, Y. Ohba, K. Shiraishi, K. Iwatani, K. Yoshimoto, and Y. Yamashita. Diaphragm perforation after radio-frequency ablation for metastatic lung cancer. Ann. Thorac. Cardiovasc. Surg. 16:426–428, 2010.PubMedGoogle Scholar
  23. 23.
    Moriondo, A., F. Boschetti, F. Bianchin, S. Lattanzio, C. Marcozzi, and D. Negrini. Tissue contribution to the mechanical features of diaphragmatic initial lymphatics. J. Physiol. 588:3957–3969, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rehman, J., J. Landman, C. Sundaram, and R. V. Clayman. Tissue chemoablation. J. Endourol. 17:647–657, 2003.CrossRefPubMedGoogle Scholar
  25. 25.
    Schwartz, A., G. Desolneux, M. Desjardin, S. Evrard, and D. Bechade. Symptomatic diaphragmatic hernia after pulmonary radiofrequency ablation. J. Visc. Surg. 150:157–158, 2013.CrossRefPubMedGoogle Scholar
  26. 26.
    Sink, J. D., G. L. Pellom, W. D. Currie, W. R. Chitwood, Jr, R. C. Hill, and A. S. Wechsler. Protection of mitochondrial function during ischemia by potassium cardioplegia: correlation with ischemic contracture. Circulation 60:158–163, 1979.CrossRefPubMedGoogle Scholar
  27. 27.
    Smith, L. R., and E. R. Barton. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. Am. J. Physiol. Cell Physiol. 306:C889–898, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Steenbergen, C., and N. G. Frangogiannis. Ischemic heart disease. In: Muscle: Fundamental Biology and Mechanisms of Disease, edited by J. Hill, and E. Olson. Boston: Elsevier, 2012, p. 497.Google Scholar
  29. 29.
    Whittaker, D. K. Mechanisms of tissue destruction following cryosurgery. Ann. R. Coll. Surg. Engl. 66:313–318, 1984.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Wood, T. F., D. M. Rose, M. Chung, D. P. Allegra, L. J. Foshag, and A. J. Bilchik. Radiofrequency ablation of 231 unresectable hepatic tumors: indications, limitations, and complications. Ann. Surg. Oncol. 7:593–600, 2000.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhou, Y. Generation of uniform lesions in high intensity focused ultrasound ablation. Ultrasonics 53:495–505, 2013.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Departments of Surgery and Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Institute for Engineering in MedicineUniversity of MinnesotaMinneapolisUSA

Personalised recommendations