Coupled Morphological–Hemodynamic Computational Analysis of Type B Aortic Dissection: A Longitudinal Study

  • Huijuan Xu
  • Marina Piccinelli
  • Bradley G. Leshnower
  • Adrien Lefieux
  • W. Robert Taylor
  • Alessandro Veneziani
Article
  • 58 Downloads

Abstract

Progressive false lumen aneurysmal degeneration in type B aortic dissection (TBAD) is a complex process with a multi-factorial etiology. Patient-specific computational fluid dynamics (CFD) simulations provide spatial and temporal hemodynamic quantities that facilitate understanding this disease progression. A longitudinal study was performed for a TBAD patient, who was diagnosed with the uncomplicated TBAD in 2006 and treated with optimal medical therapy but received surgery in 2010 due to late complication. Geometries of the aorta in 2006 and 2010 were reconstructed. With registration algorithms, we accurately quantified the evolution of the false lumen, while with CFD simulations we computed several hemodynamic indexes, including the wall shear stress (WSS), and the relative residence time (RRT). The numerical fluid model included large eddy simulation (LES) modeling for efficiently capturing the flow disturbances induced by the entry tears. In the absence of complete patient-specific data, the boundary conditions were based on a specific calibration method. Correlations between hemodynamics and the evolution field in time obtained by registration of the false lumen are discussed. Further testing of this methodology on a large cohort of patients may enable the use of CFD to predict whether patients, with originally uncomplicated TBAD, develop late complications.

Keywords

Aortic dissection Point set registration Computational fluid dynamics Large eddy simulation 

Abbreviations

CFD

Computational fluid dynamics

AD

Aortic dissection

TBAD

Type B AD

uTBAD

Uncomplicated TBAD

FL

False lumen

TL

True lumen

OMT

Optimal medical therapy

WSS

Wall shear stress

TAWSS

Time averaged WSS

RRT

Relative residence time

OSI

Oscillatory shear index

3WK

3 Element windkessel model

Notes

Acknowledgments

US-NSF Project DMS 162040 and NSF-XSEDE TG-ASC160069. The authors thank Professor R. Nerem for many fruitful discussions.

Supplementary material

10439_2018_2012_MOESM1_ESM.pdf (686 kb)
Supplementary material 1 (PDF 685 kb)

References

  1. 1.
    Afifi, R. O., H. K. Sandhu, S. S. Leake, V. Kumar, A. Azizzadeh, K. M. Charlton-Ouw, T. C. Nguyen, C. C. Miller, H. J. Safi, and A. L. Estrera. Outcomes of patients with acute type B (DeBakey III) aortic dissection: a 13 year single center experience. Am. Heart. Assoc. 2014.  https://doi.org/10.1161/CIRCULATIONAHA.115.015302.Google Scholar
  2. 2.
    Akutsu, K., J. Nejima, K. Kiuchi, K. Sasaki, M. Ochi, K. Tanaka, and T. Takano. Effects of the patent false lumen on the long-term outcome of type B acute aortic dissection. Eur. J. Cardio-Thor. Surg. 26:359–366, 2004.CrossRefGoogle Scholar
  3. 3.
    Alimohammadi, M., O. Agu, S. Balabani, and V. Díaz-Zuccarini. Development of a patient-specific simulation tool to analyse aortic dissections: assessment of mixed patient-specific flow and pressure boundary conditions. Med. Eng. Phys. 36:275–284, 2014.CrossRefPubMedGoogle Scholar
  4. 4.
    Bertagna, L., A. Quaini, and A. Veneziani. Deconvolution-based nonlinear filtering for incompressible flows at moderately large Reynolds numbers. Int. J. Numer. Methods Fluids 81:463–488, 2016.CrossRefGoogle Scholar
  5. 5.
    Chen, D., M. Müller-Eschner, D. Kotelis, D. Böckler, Y. Ventikos, and H. von Tengg-Kobligk. A longitudinal study of type-B aortic dissection and endovascular repair scenarios: computational analyses. Med. Eng. Phys. 35:1321–1330, 2013.CrossRefPubMedGoogle Scholar
  6. 6.
    Cheng, Z., C. Riga, J. Chan, M. Hamady, N. B. Wood, N. J. Cheshire, Y. Xu, and R. G. Gibbs. Initial findings and potential applicability of computational simulation of the aorta in acute type B dissection. J. Vasc. Surg. 57:35S–43S, 2013.CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng, Z., F. Tan, C. Riga, C. Bicknell, M. Hamady, R. Gibbs, N. Wood, and X. Xu. Analysis of flow patterns in a patient-specific aortic dissection model. J. Biomech. Eng. 132:051007, 2010.CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng, Z., N. B. Wood, R. G. Gibbs, and X. Y. Xu. Geometric and flow features of type B aortic dissection: initial findings and comparison of medically treated and stented cases. Ann. Biomed. Eng. 43:177–189, 2015.CrossRefPubMedGoogle Scholar
  9. 9.
    Evangelista, A., V. Galuppo, D. Gruosso, H. Cuéllar, G. Teixidó, and J. Rodríguez-Palomares. Role of entry tear size in type B aortic dissection. Ann. Cardiothorac. Surg. 3:403, 2014.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hebballi, R., and J. Swanevelder. Diagnosis and management of aortic dissection. Contin. Educ. Anaesth. Crit. Care Pain 9:14–18, 2009.CrossRefGoogle Scholar
  11. 11.
    Kim, H. J., I. E. Vignon-Clementel, C. A. Figueroa, J. F. LaDisa, K. E. Jansen, J. A. Feinstein, and C. A. Taylor. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Eng. 37:2153–2169, 2009.CrossRefPubMedGoogle Scholar
  12. 12.
    Lobato, A., and P. Puech-Leao. Predictive factors for rupture of thoracoabdominal aortic aneurysm. J. Vasc. Surg. 27:446–453, 1998.CrossRefPubMedGoogle Scholar
  13. 13.
    Modersitzki, J. Numerical Methods for Image Registration. Oxford: Oxford University Press, 2004.Google Scholar
  14. 14.
    Moireau, P., N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle, C. Taylor, and J.-F. Gerbeau. External tissue support and fluid–structure simulation in blood flows. Biomech. Model. Mechanobiol. 11:1–18, 2012.CrossRefPubMedGoogle Scholar
  15. 15.
    Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46:102–109, 2013.CrossRefPubMedGoogle Scholar
  16. 16.
    Myronenko, A., and X. Song. Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32:2262–2275, 2010.CrossRefPubMedGoogle Scholar
  17. 17.
    Nerem, R. M., D. G. Harrison, R. W. Taylor, and W. R. Alexander. Hemodynamics and vascular endothelial biology. J. Cardiovasc. Pharmacol. 21:S6–S10, 1993.CrossRefPubMedGoogle Scholar
  18. 18.
    Nienaber, C. A., and R. E. Clough. Management of acute aortic dissection. Lancet 385:800–811, 2015.CrossRefPubMedGoogle Scholar
  19. 19.
    Nienaber, C. A., S. Kische, H. Rousseau, H. Eggebrecht, T. C. Rehders, G. Kundt, A. Glass, D. Scheinert, M. Czerny, and T. Kleinfeldt. Endovascular repair of type B aortic dissection. Circulation 6:407–416, 2013.PubMedGoogle Scholar
  20. 20.
    Onitsuka, S., H. Akashi, K. Tayama, T. Okazaki, K. Ishihara, S. Hiromatsu, and S. Aoyagi. Long-term outcome and prognostic predictors of medically treated acute type B aortic dissections. Ann. Thorac. Surg. 78:1268–1273, 2004.CrossRefPubMedGoogle Scholar
  21. 21.
    Pape, L. A., M. Awais, E. M. Woznicki, T. Suzuki, S. Trimarchi, A. Evangelista, T. Myrmel, M. Larsen, K. M. Harris, and K. Greason. Presentation, diagnosis, and outcomes of acute aortic dissection: 17 year trends from the International Registry of Acute Aortic Dissection. J. Am. Coll. Cardiol. 66:350–358, 2015.CrossRefPubMedGoogle Scholar
  22. 22.
    Passerini, T., A. Quaini, U. Villa, A. Veneziani, and S. Canic. Validation of an open source framework for the simulation of blood flow in rigid and deformable vessels. Int. J. Num. Methods Biomed. Eng. 29:1192–1213, 2013.CrossRefGoogle Scholar
  23. 23.
    Pirola, S., Z. Cheng, O. Jarral, D. O’Regan, J. Pepper, T. Athanasiou, and X. Xu. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. J. Biomech. 60:15–21, 2017.CrossRefPubMedGoogle Scholar
  24. 24.
    Quarteroni, A., A. Veneziani, and C. Vergara. Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302:193–252, 2016.CrossRefGoogle Scholar
  25. 25.
    Rayz, V., L. Boussel, L. Ge, J. Leach, A. Martin, M. Lawton, C. McCulloch, and D. Saloner. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann. Biomed Eng. 38:3058–3069, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shang, E. K., D. P. Nathan, R. M. Fairman, J. E. Bavaria, R. C. Gorman, J. H. Gorman, and B. M. Jackson. Use of computational fluid dynamics studies in predicting aneurysmal degeneration of acute type B aortic dissections. J. Vasc. Surg. 62:279–284, 2015.CrossRefPubMedGoogle Scholar
  27. 27.
    Song, J.-M., S.-D. Kim, J.-H. Kim, M.-J. Kim, D.-H. Kang, J. B. Seo, T.-H. Lim, J. W. Lee, M.-G. Song, and J.-K. Song. Long-term predictors of descending aorta aneurysmal change in patients with aortic dissection. J. Am. Coll. Cardiol. 50:799–804, 2007.CrossRefPubMedGoogle Scholar
  28. 28.
    Sueyoshi, E., I. Sakamoto, K. Hayashi, T. Yamaguchi, and T. Imada. Growth rate of aortic diameter in patients with type B aortic dissection during the chronic phase. Circulation 110:II-256–II-261, 2004.CrossRefGoogle Scholar
  29. 29.
    Svensson, L. G., N. T. Kouchoukos, D. C. Miller, J. E. Bavaria, J. S. Coselli, M. A. Curi, H. Eggebrecht, J. A. Elefteriades, R. Erbel, and T. G. Gleason. Expert consensus document on the treatment of descending thoracic aortic disease using endovascular stent-grafts. Ann. Thorac. Surg. 85:S1–S41, 2008.CrossRefPubMedGoogle Scholar
  30. 30.
    Tsai, T. T., A. Evangelista, C. A. Nienaber, T. Myrmel, G. Meinhardt, J. V. Cooper, D. E. Smith, T. Suzuki, R. Fattori, and A. Llovet. Partial thrombosis of the false lumen in patients with acute type B aortic dissection. N Engl. J. Med. 357:349–359, 2007.CrossRefPubMedGoogle Scholar
  31. 31.
    Tse, K. M., P. Chiu, H. P. Lee, and P. Ho. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J. Biomech. 44:827–836, 2011.CrossRefPubMedGoogle Scholar
  32. 32.
    Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy, and H. Meng. Hemodynamic–morphologic discriminants for intracranial aneurysm rupture. Stroke 42:144–152, 2011.CrossRefPubMedGoogle Scholar
  33. 33.
    Xiao, N., J. D. Humphrey, and C. A. Figueroa. Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. J. Comput. Phys. 244:22–40, 2013.CrossRefPubMedGoogle Scholar
  34. 34.
    Xu, H., Z. Li, H. Dong, Y. Zhang, J. Wei, P. N. Watton, W. Guo, D. Chen, and J. Xiong. Hemodynamic parameters that may predict false-lumen growth in type-B aortic dissection after endovascular repair: a preliminary study on long-term multiple follow-ups. Med. Eng. Phys. 50:12–21, 2017.CrossRefPubMedGoogle Scholar
  35. 35.
    Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25:1303–1310, 1992.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA
  3. 3.Department of Radiology and Imaging SciencesEmory UniversityAtlantaUSA
  4. 4.Department of SurgeryEmory UniversityAtlantaUSA
  5. 5.Department of CardiologyEmory UniversityAtlantaUSA
  6. 6.Atlanta VA Medical CenterAtlantaUSA
  7. 7.School of Advanced Studies IUSSPaviaItaly

Personalised recommendations