Skip to main content
Log in

Effects of Hollow Fiber Membrane Oscillation on an Artificial Lung

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Gas transfer through hollow fiber membranes (HFMs) can be increased via fiber oscillation. Prior work, however, does not directly translate to present-day, full-scale artificial lungs. This in vitro study characterized the effects of HFM oscillations on oxygenation and hemolysis for a pediatric-sized HFM bundle. Effects of oscillation stroke length (2–10 mm) and frequency (1–25 Hz) on oxygen transfer were measured according to established standards. The normalized index of hemolysis was measured for select conditions. All measurements were performed at a 2.5 L min−1 blood flow rate. A lumped parameter model was used to predict oscillation-induced blood flow and elucidate the effects of system parameters on oxygenation. Oxygen transfer increased during oscillations, reaching a maximum oxygenation efficiency of 510 mL min−1 m−2 (97% enhancement relative to no oscillation). Enhancement magnitudes matched well with model-predicted trends and were dependent on stroke length, frequency, and physical system parameters. A 40% oxygenation enhancement was achieved without significant hemolysis increase. At a constant enhancement magnitude, a larger oscillation frequency resulted in increased hemolysis. In conclusion, HFM oscillation is a feasible approach to increasing artificial lung gas transfer efficiency. The optimal design for maximizing efficiency at small fiber displacements should minimize bundle resistance and housing compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bartlett, R. H., P. A. Drinker, N. E. Burns, S. W. Fong, and T. Hyans. The toroidal membrane oxygenator: design, performance, and prolonged bypass testing of a clinical model. Trans. Am. Soc. Artif. Intern. Organs 18:369–374, 1972.

    Article  CAS  PubMed  Google Scholar 

  2. Benn, J. A., P. A. Drinker, B. Mikic, M. C. Shults, E. J. Lacava, G. S. Kopf, R. H. Bartlett, and E. L. Hanson. Predictive correlation of oxygen and carbon dioxide transfer in a blood oxygenator with induced secondary flows. Trans. Am. Soc. Artif. Intern. Organs 17:317–322, 1971.

    CAS  PubMed  Google Scholar 

  3. Costantino, M. L., and G. B. Fiore. Normalization of experimental results with respect to inlet conditions in membrane oxygenator testing. Perfusion 11:45–51, 1996.

    Article  CAS  PubMed  Google Scholar 

  4. Federspiel, W. J., and K. A. Henchir. Lung, Artificial: Basic Principles and Current Applications. Pittsburgh, PA: University of Pittsburgh, 2004.

    Google Scholar 

  5. Hong, C.-U., J.-M. Kim, M.-H. Kim, S.-J. Kim, H.-S. Kang, J.-S. Kim, and G.-B. Kim. Gas transfer and hemolysis in an intravascular lung assist device using a PZT actuator. Int. J. Precis. Eng. Manuf. 10:67–73, 2009.

    Article  Google Scholar 

  6. Kim, G.-B., C.-U. Hong, and T.-K. Kwon. Vibration characteristics of piezoelectric lead zirconate titanate by fluid flow in intravascular oxygenator. Jpn. J. Appl. Phys. 45:3811, 2006.

    Article  CAS  Google Scholar 

  7. Kim, G.-B., S.-J. Kim, C.-U. Hong, T.-K. Kwon, and N.-G. Kim. Enhancement of oxygen transfer in hollow fiber membrane by the vibration method. Korean J. Chem. Eng. 22:521–527, 2005.

    Article  CAS  Google Scholar 

  8. Kim, G.-B., S.-J. Kim, M.-H. Kim, C.-U. Hong, and H.-S. Kang. Development of a hollow fiber membrane module for using implantable artificial lung. J. Membr. Sci. 326:130–136, 2009.

    Article  CAS  Google Scholar 

  9. Krantz, W. B., R. R. Bilodeau, M. E. Voorhees, and R. J. Elgas. Use of axial membrane vibrations to enhance mass transfer in a hollow tube oxygenator. J. Membr. Sci. 124:283–299, 1997.

    Article  CAS  Google Scholar 

  10. Madhani, S. P., B. J. Frankowski, and W. J. Federspiel. Fiber bundle design for an integrated wearable artificial lung. ASAIO J. 2017. https://doi.org/10.1097/mat.0000000000000542.

    Google Scholar 

  11. Maquet Quadrox-i Neonatal and Pediatric Performance Data Sheet.

  12. Narang, N., J. T. Thibodeau, B. D. Levine, M. O. Gore, C. R. Ayers, R. A. Lange, J. E. Cigarroa, A. T. Turer, J. A. de Lemos, and D. K. McGuire. Inaccuracy of estimated resting oxygen uptake in the clinical setting. Circulation 129:203–210, 2014.

    Article  CAS  PubMed  Google Scholar 

  13. Qamar, A., and J. L. Bull. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application. Comput. Methods Biomech. Biomed. Eng. 2017. https://doi.org/10.1080/10255842.2017.1340467.

    Google Scholar 

  14. Qamar, A., R. Seda, and J. L. Bull. Pulsatile flow past an oscillating cylinder. Phys. Fluids 1994–Present 23:041903, 2011.

    Article  Google Scholar 

  15. Rehder, K. J., D. A. Turner, M. G. Hartwig, W. L. Williford, D. Bonadonna, R. J. Walczak, R. D. Davis, D. Zaas, and I. M. Cheifetz. Active rehabilitation during extracorporeal membrane oxygenation as a bridge to lung transplantation. Respir. Care 58:1291–1298, 2013.

    Article  PubMed  Google Scholar 

  16. Sorin D100 and D101 Performance Data Sheet.

  17. Svitek, R. G., and W. J. Federspiel. A mathematical model to predict CO2 removal in hollow fiber membrane oxygenators. Ann. Biomed. Eng. 36:992–1003, 2008.

    Article  CAS  PubMed  Google Scholar 

  18. Svitek, R. G., B. J. Frankowski, and W. J. Federspiel. Evaluation of a pumping assist lung that uses a rotating fiber bundle. ASAIO J. 51:773–780, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Turner, D. A., I. M. Cheifetz, K. J. Rehder, W. L. Williford, D. Bonadonna, S. J. Banuelos, S. Peterson-Carmichael, S. S. Lin, R. D. Davis, and D. Zaas. Active rehabilitation and physical therapy during extracorporeal membrane oxygenation while awaiting lung transplantation: a practical approach*. Crit. Care Med. 39:2593–2598, 2011.

    Article  PubMed  Google Scholar 

  20. Wu, Z. J., B. Gellman, T. Zhang, M. E. Taskin, K. A. Dasse, and B. P. Griffith. Computational fluid dynamics and experimental characterization of the pediatric pump-lung. Cardiovasc. Eng. Technol. 2:276–287, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grant Number R01HL117637 and the McGowan Institute for Regenerative Medicine. William J. Federspiel (an author of this work) is the Head of the Scientific Advisory Board and an Equity Holder in ALung Technologies. The other authors of this work have no pertinent financial relationships to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan A. Orizondo.

Additional information

Associate Editor Raoul van Loon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orizondo, R.A., Gino, G., Sultzbach, G. et al. Effects of Hollow Fiber Membrane Oscillation on an Artificial Lung. Ann Biomed Eng 46, 762–771 (2018). https://doi.org/10.1007/s10439-018-1995-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-1995-9

Keywords

Navigation