Annals of Biomedical Engineering

, Volume 46, Issue 5, pp 762–771 | Cite as

Effects of Hollow Fiber Membrane Oscillation on an Artificial Lung

  • Ryan A. Orizondo
  • Guy Gino
  • Garret Sultzbach
  • Shalv P. Madhani
  • Brian J. Frankowski
  • William J. Federspiel


Gas transfer through hollow fiber membranes (HFMs) can be increased via fiber oscillation. Prior work, however, does not directly translate to present-day, full-scale artificial lungs. This in vitro study characterized the effects of HFM oscillations on oxygenation and hemolysis for a pediatric-sized HFM bundle. Effects of oscillation stroke length (2–10 mm) and frequency (1–25 Hz) on oxygen transfer were measured according to established standards. The normalized index of hemolysis was measured for select conditions. All measurements were performed at a 2.5 L min−1 blood flow rate. A lumped parameter model was used to predict oscillation-induced blood flow and elucidate the effects of system parameters on oxygenation. Oxygen transfer increased during oscillations, reaching a maximum oxygenation efficiency of 510 mL min−1 m−2 (97% enhancement relative to no oscillation). Enhancement magnitudes matched well with model-predicted trends and were dependent on stroke length, frequency, and physical system parameters. A 40% oxygenation enhancement was achieved without significant hemolysis increase. At a constant enhancement magnitude, a larger oscillation frequency resulted in increased hemolysis. In conclusion, HFM oscillation is a feasible approach to increasing artificial lung gas transfer efficiency. The optimal design for maximizing efficiency at small fiber displacements should minimize bundle resistance and housing compliance.


Oxygenator design Respiratory support Extracorporeal membrane oxygenation 



This work was supported by National Institutes of Health Grant Number R01HL117637 and the McGowan Institute for Regenerative Medicine. William J. Federspiel (an author of this work) is the Head of the Scientific Advisory Board and an Equity Holder in ALung Technologies. The other authors of this work have no pertinent financial relationships to disclose.


  1. 1.
    Bartlett, R. H., P. A. Drinker, N. E. Burns, S. W. Fong, and T. Hyans. The toroidal membrane oxygenator: design, performance, and prolonged bypass testing of a clinical model. Trans. Am. Soc. Artif. Intern. Organs 18:369–374, 1972.CrossRefPubMedGoogle Scholar
  2. 2.
    Benn, J. A., P. A. Drinker, B. Mikic, M. C. Shults, E. J. Lacava, G. S. Kopf, R. H. Bartlett, and E. L. Hanson. Predictive correlation of oxygen and carbon dioxide transfer in a blood oxygenator with induced secondary flows. Trans. Am. Soc. Artif. Intern. Organs 17:317–322, 1971.PubMedGoogle Scholar
  3. 3.
    Costantino, M. L., and G. B. Fiore. Normalization of experimental results with respect to inlet conditions in membrane oxygenator testing. Perfusion 11:45–51, 1996.CrossRefPubMedGoogle Scholar
  4. 4.
    Federspiel, W. J., and K. A. Henchir. Lung, Artificial: Basic Principles and Current Applications. Pittsburgh, PA: University of Pittsburgh, 2004.Google Scholar
  5. 5.
    Hong, C.-U., J.-M. Kim, M.-H. Kim, S.-J. Kim, H.-S. Kang, J.-S. Kim, and G.-B. Kim. Gas transfer and hemolysis in an intravascular lung assist device using a PZT actuator. Int. J. Precis. Eng. Manuf. 10:67–73, 2009.CrossRefGoogle Scholar
  6. 6.
    Kim, G.-B., C.-U. Hong, and T.-K. Kwon. Vibration characteristics of piezoelectric lead zirconate titanate by fluid flow in intravascular oxygenator. Jpn. J. Appl. Phys. 45:3811, 2006.CrossRefGoogle Scholar
  7. 7.
    Kim, G.-B., S.-J. Kim, C.-U. Hong, T.-K. Kwon, and N.-G. Kim. Enhancement of oxygen transfer in hollow fiber membrane by the vibration method. Korean J. Chem. Eng. 22:521–527, 2005.CrossRefGoogle Scholar
  8. 8.
    Kim, G.-B., S.-J. Kim, M.-H. Kim, C.-U. Hong, and H.-S. Kang. Development of a hollow fiber membrane module for using implantable artificial lung. J. Membr. Sci. 326:130–136, 2009.CrossRefGoogle Scholar
  9. 9.
    Krantz, W. B., R. R. Bilodeau, M. E. Voorhees, and R. J. Elgas. Use of axial membrane vibrations to enhance mass transfer in a hollow tube oxygenator. J. Membr. Sci. 124:283–299, 1997.CrossRefGoogle Scholar
  10. 10.
    Madhani, S. P., B. J. Frankowski, and W. J. Federspiel. Fiber bundle design for an integrated wearable artificial lung. ASAIO J. 2017. Scholar
  11. 11.
    Maquet Quadrox-i Neonatal and Pediatric Performance Data Sheet.Google Scholar
  12. 12.
    Narang, N., J. T. Thibodeau, B. D. Levine, M. O. Gore, C. R. Ayers, R. A. Lange, J. E. Cigarroa, A. T. Turer, J. A. de Lemos, and D. K. McGuire. Inaccuracy of estimated resting oxygen uptake in the clinical setting. Circulation 129:203–210, 2014.CrossRefPubMedGoogle Scholar
  13. 13.
    Qamar, A., and J. L. Bull. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application. Comput. Methods Biomech. Biomed. Eng. 2017. Scholar
  14. 14.
    Qamar, A., R. Seda, and J. L. Bull. Pulsatile flow past an oscillating cylinder. Phys. Fluids 1994–Present 23:041903, 2011.CrossRefGoogle Scholar
  15. 15.
    Rehder, K. J., D. A. Turner, M. G. Hartwig, W. L. Williford, D. Bonadonna, R. J. Walczak, R. D. Davis, D. Zaas, and I. M. Cheifetz. Active rehabilitation during extracorporeal membrane oxygenation as a bridge to lung transplantation. Respir. Care 58:1291–1298, 2013.CrossRefPubMedGoogle Scholar
  16. 16.
    Sorin D100 and D101 Performance Data Sheet.Google Scholar
  17. 17.
    Svitek, R. G., and W. J. Federspiel. A mathematical model to predict CO2 removal in hollow fiber membrane oxygenators. Ann. Biomed. Eng. 36:992–1003, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    Svitek, R. G., B. J. Frankowski, and W. J. Federspiel. Evaluation of a pumping assist lung that uses a rotating fiber bundle. ASAIO J. 51:773–780, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Turner, D. A., I. M. Cheifetz, K. J. Rehder, W. L. Williford, D. Bonadonna, S. J. Banuelos, S. Peterson-Carmichael, S. S. Lin, R. D. Davis, and D. Zaas. Active rehabilitation and physical therapy during extracorporeal membrane oxygenation while awaiting lung transplantation: a practical approach*. Crit. Care Med. 39:2593–2598, 2011.CrossRefPubMedGoogle Scholar
  20. 20.
    Wu, Z. J., B. Gellman, T. Zhang, M. E. Taskin, K. A. Dasse, and B. P. Griffith. Computational fluid dynamics and experimental characterization of the pediatric pump-lung. Cardiovasc. Eng. Technol. 2:276–287, 2011.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Ryan A. Orizondo
    • 1
  • Guy Gino
    • 2
  • Garret Sultzbach
    • 1
  • Shalv P. Madhani
    • 1
    • 3
  • Brian J. Frankowski
    • 1
  • William J. Federspiel
    • 1
    • 3
    • 4
    • 5
  1. 1.McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghUSA
  2. 2.ORT Braude College of EngineeringKarmielIsrael
  3. 3.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  4. 4.Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghUSA
  5. 5.Department of Critical Care MedicineUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations