Skip to main content

Advertisement

Log in

Spheroid Culture System Confers Differentiated Transcriptome Profile and Functional Advantage to 3T3-L1 Adipocytes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study highlights functional differences between 2-D monolayer and 3-D spheroid 3T3-L1 adipocyte culture models and explores the underlying genomic mechanisms responsible for the different phenotypes present. The spheroids showed higher triglyceride accumulation than the monolayer culture and further increase with larger spheroid size. Whole transcriptome analysis indicated significant differential expression of genes related to adipogenesis, including adipocytokine signaling, fatty acid metabolism, and PPAR-γ signaling. Spheroids also showed downregulation of matrix metalloproteinases (MMPs), integrin, actin-cytoskeleton associated genes, and Rho/GTPase3 expression relative to 2-D monolayer, indicating suppression of the Rho-ROCK pathway and thereby promoting adipogenic differentiation. When exposed to linoleic acid (500 μM) and TNF-α (125 ng/mL) to promote chronic adiposity, linoleic acid treatment resulted in increased intracellular triglycerides and subsequent TNF-α treatment resulted in significantly altered adipocytokine signaling, fatty acid metabolism, and PPAR signaling, in addition to upregulation of multiple MMPs in spheroids vs. monolayer. Overall, 3-D spheroids showed enhanced adipogenic phenotype as indicated by triglyceride synthesis and transcriptome changes while retaining sensitivity to a pro-inflammatory stimulus. The 3-D spheroid culture thus may provide a simple, convenient, and sensitive in vitro model to study adipocyte response to metabolic stresses relevant to clinical pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Alwayn, I. P., K. Gura, V. Nosé, B. Zausche, P. Javid, J. Garza, J. Verbesey, S. Voss, M. Ollero, C. Andersson, B. Bistrian, J. Folkman, and M. Puder. Omega-3 fatty acid supplementation prevents hepatic steatosis in a murine model of nonalcoholic fatty liver disease. Pediatr. Res. 57:445–452, 2005.

    Article  CAS  PubMed  Google Scholar 

  2. Bouloumie, A., C. Sengenès, G. Portolan, J. Galitzky, and M. Lafontan. Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipocyte differentiation. Diabetes. 50:2080–2086, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Calder, P. C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 83:S1505–S1519, 2006.

    Article  Google Scholar 

  4. Cawthorn, W. P., and J. K. Sethi. TNF-alpha and adipocyte biology. FEBS Lett. 582:117–131, 2008.

    Article  CAS  PubMed  Google Scholar 

  5. Chavey, C., B. Mari, M. N. Monthouel, S. Bonnafous, P. Anglard, E. Van Obberghen, and S. Tartare-Deckert. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem. 278:11888–11896, 2003.

    Article  CAS  PubMed  Google Scholar 

  6. Chun, T., K. B. Hotary, F. Sabeh, A. R. Saltiel, E. D. Allen, and S. J. Weiss. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell. 125:577–591, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Cristancho, A. G., and M. A. Lazar. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell. Biol. 12:722–734, 2011.

    Article  CAS  PubMed  Google Scholar 

  8. Daya, S., A. J. Loughlin, and H. A. Macqueen. Culture and differentiation of preadipocytes in two-dimensional and three-dimensional in vitro systems. Differentiation. 75:360–370, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Duranti, F., G. Salti, B. Bovani, M. Calandra, and M. L. Rosati. Injectable hyaluronic acid gel for soft tissue augmentation: a clinical and histological study. Dermatol. Surg. 24:1317–1325, 1998.

    CAS  PubMed  Google Scholar 

  10. Evans, M., C. Geigerman, J. Cook, L. Curtis, B. Kuebler, and M. McIntosh. Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3T3-L1 preadipocytes. Lipids. 35:899–910, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Garaulet, M., J. J. Hernandez-Morante, J. Lujan, F. J. Tebar, and S. Zamora. Relationship between fat cell size and number and fatty acid composition in adipose tissue from different fat depots in overweight/obese humans. Int. J. Obes. (Lond) 30:899–905, 2006.

    Article  CAS  Google Scholar 

  12. Kokta, T. A., A. L. Strat, M. R. Papasani, J. I. Szasz, M. V. Dodson, and R. A. Hill. Regulation of lipid accumulation in 3T3-L1 cells: insulin-independent and combined effects of fatty acids and insulin. Animal. 2:92–99, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Lopez, I. P., A. Marti, F. I. Milagro, M. D. L. Zulet, M. J. Moreno-Aliaga, J. A. Martinez, and C. De Miguel. DNA microarray analysis of genes differentially expressed in diet-induced (cafeteria) obese rats. Obes. Res. 11:188–194, 2003.

    Article  CAS  PubMed  Google Scholar 

  14. Lynch, C. M., D. A. Kinzenbaw, X. Chen, S. Zhan, E. Mezzetti, J. Filosa, A. Ergul, J. L. Faulkner, F. M. Faraci, and S. P. Didion. Nox2-derived superoxide contributes to cerebral vascular dysfunction in diet-induced obesity. Stroke. 44:3195–3201, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Madsen, L., R. K. Petersen, and K. Kristiansen. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim. Biophys. Acta. 1740:266–286, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Mammoto, A., and D. E. Ingber. Cytoskeletal control of growth and cell fate switching. Curr. Opin. Cell Biol. 21:864–870, 2009.

    Article  CAS  PubMed  Google Scholar 

  17. Marler, J. J., A. Guha, J. Rowley, R. Koka, D. Mooney, J. Upton, and J. P. Vacanti. Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts. Plast. Reconstr. Surg. 105:2049–2058, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadjiraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6:483–495, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Patel, P. N., A. S. Gobin, J. L. West, and C. W. Patrick, Jr. Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng. 11:1498–1505, 2005.

    Article  CAS  PubMed  Google Scholar 

  20. Patrick, Jr, C. W. Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. Semin. Surg. Oncol. 19:302–311, 2000.

    Article  PubMed  Google Scholar 

  21. Poulsen, L. I., M. Siersbæk, and S. Mandrup. PPARs: fatty acid sensors controlling metabolism. Semin. Cell. Dev. Biol. 23:631–639, 2012.

    Article  PubMed  Google Scholar 

  22. Sauma, L., K. G. Stenkula, P. Kjølhede, P. Strålfors, M. Söderström, and F. H. Nystrom. PPAR-γ response element activity in intact primary human adipocytes: effects of fatty acids. Nutrition. 22:60–68, 2006.

    Article  CAS  PubMed  Google Scholar 

  23. Shiomi, N., M. Maeda, and M. Mimura. Compounds that inhibit triglyceride accumulation and TNFα secretion in adipocytes. J. Biomed. Sci. Eng. 4:684–691, 2011.

    Article  CAS  Google Scholar 

  24. Spiegelman, B. M., and C. A. Ginty. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell. 35:657–666, 1983.

    Article  CAS  PubMed  Google Scholar 

  25. Stein, C. J., and G. A. Colditz. The epidemic of obesity. J. Clin. Endocrinol. Metab. 89:2522–2525, 2004.

    Article  CAS  PubMed  Google Scholar 

  26. Todoric, J., M. Löffler, J. Huber, M. Bilban, M. Reimers, A. Kadl, M. Zeyda, W. Waldhäusl, and T. M. Stulnig. Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids. Diabetologia. 49:2109–2119, 2006.

    Article  CAS  PubMed  Google Scholar 

  27. Turner, P. A., B. Gurumurthy, J. L. Bailey, C. M. Elks, and A. V. Janorkar. Adipogenic differentiation of human adipose-derived stem cells grown as spheroids. Proc. Biochem. 59:312–320, 2017.

    Article  CAS  Google Scholar 

  28. Turner, P. A., L. M. Harris, C. A. Purser, R. C. Baker, and A. V. Janorkar. A surface-tethered spheroid model for functional evaluation of 3T3-L1 adipocytes. Biotechnol. Bioeng. 111:174–183, 2014.

    Article  CAS  PubMed  Google Scholar 

  29. Turner, P. A., T. Yi, S. J. Weiss, and A. V. Janorkar. Three-dimensional spheroid cell model of in vitro adipocyte inflammation. Tissue Eng. Part A 21:1837–1847, 2015.

    Article  CAS  PubMed  Google Scholar 

  30. Westbrook, L. J., A. C. Johnson, K. R. Regner, J. Lee, D. L. Mattson, P. B. Kyle, J. R. Henegar, and M. R. Garrett. Genetic susceptibility and loss of Nr4a1 enhances macrophage mediated renal injury in a rodent model of chronic kidney disease. J. Am. Soc. Nephr. 25:2499–2510, 2014.

    Article  CAS  Google Scholar 

  31. Xu, H. E., M. H. Lambert, V. G. Montana, D. J. Parks, S. G. Blanchard, P. J. Brown, D. D. Sternbach, J. M. Lehmann, G. B. Wisely, T. M. Willson, S. A. Kliewer, and M. V. Milburn. Molecular recognition of fatty acids by peroxisome proliferator–activated receptors. Mol. Cell. 3:397–403, 1999.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the School of Dentistry and the University of Mississippi Medical Center intramural research support programs, National Science Foundation (NSF; CBET-1033525), and National Institutes of Health (NIH; R01EB020006). The work performed through the UMMC Molecular and Genomics Facility is supported, in part, by funds from NIH, including Mississippi INBRE (P20GM103476), Center for Psychiatric Neuroscience COBRE (P30GM103328) and Obesity, Cardiorenal and Metabolic Diseases COBRE (P20GM104357). Animal fat isolation work is funded by NIH (R01HL089884, R01HL107632 to SPD). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NSF or NIH. This work made use of instruments in the Department of Biomedical Materials Science Shared Equipment Facility.

Conflict of interest

The authors have no conflict of interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol V. Janorkar.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, P.A., Garrett, M.R., Didion, S.P. et al. Spheroid Culture System Confers Differentiated Transcriptome Profile and Functional Advantage to 3T3-L1 Adipocytes. Ann Biomed Eng 46, 772–787 (2018). https://doi.org/10.1007/s10439-018-1993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-1993-y

Keywords

Navigation