Skip to main content
Log in

Mesh Convergence Behavior and the Effect of Element Integration of a Human Head Injury Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Numerous head injury models exist that vary in mesh density by orders of magnitude. A careful study of the mesh convergence behavior is necessary, especially in terms of strain most relevant to brain injury. To this end, as well as to investigate the effect of element integration scheme on simulated strains, we re-meshed the Worcester Head Injury Model at five mesh densities (~ 7.2–1000 k high-quality hexahedral elements of the brain). Results from explicit dynamic simulations of three cadaveric impacts and an in vivo head rotation were compared. First, scalar metrics of the whole brain only considering magnitude were used, including peak maximum principal strain and population-based median strain. They were further extended to deep white matter regions and the entire brain elements, respectively, to form two “response vectors” to account for both magnitude and distribution. Using benchmark enhanced full-integration elements (C3D8I), a minimum of 202.8 k brain elements were necessary to converge for response vectors of the deep white matter regions. This model was further used to simulate with reduced integration (C3D8R). We found that hourglass energy higher than the common rule of thumb (e.g., up to 44.38% vs. < 10% of internal energy) was necessary to maintain comparable strain relative to C3D8I. Based on these results, it is recommended that a human head injury model should have a minimum number of 202.8 k elements, or an average element size of no larger than 1.8 mm, for the brain. C3D8R formulation with relax stiffness hourglass control using a high scaling factor is also recommended to achieve sufficient accuracy without substantial computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abaqus. Abaqus Online Documentation, Abaqus 2016., 2016.

  2. Atsumi, N., Y. Nakahira, and M. Iwamoto. Development and validation of a head/brain FE model and investigation of influential factor on the brain response during head impact. Int. J. Veh. Saf. 9:1–23, 2016.

    Article  Google Scholar 

  3. Bandak, F. A. On the Mechanics of impact neurotrauma : a review and critical synthesis. J. Neurotrauma 12:635–650, 1995.

    Article  CAS  PubMed  Google Scholar 

  4. Bigler, E. D., and W. L. Maxwell. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging Behav. 6:108–136, 2012.

    Article  PubMed  Google Scholar 

  5. Cai, Y., S. Wu, W. Zhao, Z. Li, Z. Wu, and S. Ji. Concussion classification via deep learning using whole-brain white matter fiber strains. PLoS ONE 13:e0197992, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chafi, M. S., V. Dirisala, G. Karami, and M. Ziejewski. A finite element method parametric study of the dynamic response of the human brain with different cerebrospinal fluid constitutive properties. Proc. Inst. Mech. Eng. H. 223:1003–1019, 2009.

    Article  PubMed  Google Scholar 

  7. Chatelin, S., C. Deck, F. Renard, S. Kremer, C. Heinrich, J.-P. Armspach, and R. Willinger. Computation of axonal elongation in head trauma finite element simulation. J. Mech. Behav. Biomed. Mater. 4:1905–1919, 2011.

    Article  PubMed  Google Scholar 

  8. Chen, Y., and M. Ostoja-Starzewski. MRI-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mech. 213:155–167, 2010.

    Article  Google Scholar 

  9. Duhaime, A.-C., J. G. Beckwith, A. C. Maerlender, T. W. McAllister, J. J. Crisco, S. M. Duma, P. G. Brolinson, S. Rowson, L. A. Flashman, J. J. Chu, and R. M. Greenwald. Spectrum of acute clinical characteristics of diagnosed concussions in college athletes wearing instrumented helmets. J. Neurosurg. 117:1092–1099, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Garimella, H. T., and R. H. Kraft. Modeling the mechanics of axonal fiber tracts using the embedded finite element method. Int. J. Numer. Method. Biomed. Eng. 33:26–35, 2017.

    Article  Google Scholar 

  11. Giordano, C., and S. Kleiven. Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling. Stapp Car Crash J. 58:29–61, 2014.

    PubMed  Google Scholar 

  12. Hardy, W. N., M. J. Mason, C. D. Foster, C. S. Shah, J. M. Kopacz, K. H. Yang, A. I. King, J. Bishop, M. Bey, W. Anderst, and S. Tashman. A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51:17–80, 2007.

    PubMed  PubMed Central  Google Scholar 

  13. Ji, S., H. Ghadyani, R. P. Bolander, J. G. Beckwith, J. C. Ford, T. W. McAllister, L. A. Flashman, K. D. Paulsen, K. Ernstrom, S. Jain, R. Raman, L. Zhang, and R. M. Greenwald. Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head. Ann. Biomed. Eng. 42:11–24, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ji, S., and W. Zhao. A pre-computed brain response atlas for instantaneous strain estimation in contact sports. Ann. Biomed. Eng. 43:1877–1895, 2015.

    Article  PubMed  Google Scholar 

  15. Ji, S., W. Zhao, J. C. Ford, J. G. Beckwith, R. P. Bolander, R. M. Greenwald, L. A. Flashman, K. D. Paulsen, and T. W. McAllister. Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion. J. Neurotrauma 32:441–454, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  16. King, A. I., K. H. Yang, L. Zhang, W. Hardy, and D. C. Viano. Is head injury caused by linear or angular acceleration?, 2003.

  17. Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51:81–114, 2007.

    PubMed  Google Scholar 

  18. Kleiven, S., and W. N. W. Hardy. Correlation of an FE model of the human head with local brain motion—consequences for injury prediction. Stapp Car Crash J. 46:123–144, 2002.

    PubMed  Google Scholar 

  19. Kleiven, S., and W. N. W. Hardy. Correlation of an FE model of the human head with local brain motion-consequences for injury prediction. Stapp Car Crash J. 46:123–144, 2002.

    PubMed  Google Scholar 

  20. Kleiven, S., and H. von Holst. Consequences of head size following trauma to the human head. J. Biomech. 35:153–160, 2002.

    Article  PubMed  Google Scholar 

  21. Krueger, R. Development of benchmark examples for delamination onset and fatigue growth prediction. Tech Rep NF1676L-11493, NASA;, 2011.

  22. Langer, P., M. Maeder, C. Guist, M. Krause, and S. Marburg. More than six elements per wavelength: the practical use of structural finite element models and their accuracy in comparison with experimental results. J. Comput. Acoust. 25:1750025, 2017.

    Article  Google Scholar 

  23. Laurent, H., R. Greze, M. C. Oliveira, L. F. Menezes, P. Y. Manach, and J. L. Alves. Numerical study of springback using the split-ring test for an AA5754 aluminum alloy. Finite Elem. Anal. Des. 46:751–759, 2010.

    Article  Google Scholar 

  24. Mao, H., H. Gao, L. Cao, V. V. Genthikatti, and K. H. Yang. Development of high-quality hexahedral human brain meshes using feature-based multi-block approach. Comput. Methods Biomech. Biomed. Eng. 16:271–279, 2013.

    Article  Google Scholar 

  25. Mao, H., F. Guan, X. Han, and K. H. Yang. Strain-based regional traumatic brain injury intensity in controlled cortical impact: a systematic numerical analysis. J. Neurotrauma 28:2263–2276, 2011.

    Article  PubMed  Google Scholar 

  26. Mao, H., L. Zhang, B. Jiang, V. V. V. Genthikatti, X. Jin, F. Zhu, R. Makwana, A. Gill, G. Jandir, A. Singh, and K. H. H. Yang. Development of a finite element human head model partially validated with thirty five experimental cases. J. Biomech. Eng. 135:11102, 2013.

    Article  Google Scholar 

  27. Miller, L. E., J. E. Urban, and J. D. Stitzel. Development and validation of an atlas-based finite element brain model model. Biomech Model. 15:1201–1214, 2016.

    Article  Google Scholar 

  28. Post, A., E. S. Walsh, T. B. Hoshizaki, and M. D. Gilchrist. Analysis of loading curve characteristics on the production of brain deformation metrics. Proc. Inst. Mech. Eng. Part P 226:200–207, 2012.

    Google Scholar 

  29. Rashid, B., M. Destrade, and M. D. Gilchrist. Mechanical characterization of brain tissue in compression at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 10:23–38, 2012.

    Article  PubMed  Google Scholar 

  30. Rashid, B., M. Destrade, and M. D. Gilchrist. Mechanical characterization of brain tissue in tension at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 33:43–54, 2014.

    Article  PubMed  Google Scholar 

  31. Ruan, J., T. Khalil, and A. King. Finite element modeling of direct head impact. Proc. 37th Stapp Car Crash Conf. 69–81, 1993.https://doi.org/10.4271/933114.

  32. Sabet, A. A., E. Christoforou, B. Zatlin, G. M. Genin, and P. V. Bayly. Deformation of the human brain induced by mild angular head acceleration. J. Biomech. 41:307–315, 2008.

    Article  PubMed  Google Scholar 

  33. Sahoo, D., C. Deck, and R. Willinger. Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model. J. Mech. Behav. Biomed. Mater. 33:24–42, 2014.

    Article  PubMed  Google Scholar 

  34. Sullivan, S., S. A. Eucker, D. Gabrieli, C. Bradfield, B. Coats, M. R. Maltese, J. Lee, C. Smith, and S. S. Margulies. White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities. Biomech. Model. Mechanobiol. 14:877–896, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Takhounts, E. G., R. H. Eppinger, J. Q. Campbell, R. E. Tannous, E. D. Power, and L. S. Shook. On the development of the SIMon finite element head model. Stapp Car Crash J. 47:107–133, 2003.

    PubMed  Google Scholar 

  36. Takhounts, E. G., S. A. Ridella, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, S. Duma, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J. 52:1–31, 2008.

    PubMed  Google Scholar 

  37. Ward, C. C., and R. B. Thompson. The development of a detailed finite element brain model. Stapp Car Crash Conf. Proc. SAE Technical Paper 751163, 1975.https://doi.org/10.4271/751163.

  38. Yanaoka, T., Y. Dokko, and Y. Takahashi. Investigation on an Injury Criterion Related to Traumatic Brain Injury Primarily Induced by Head Rotation. SAE Tech. Pap. 2015-01-1439, 2015.https://doi.org/10.4271/2015-01-1439.copyright.

  39. Yang, K., H. Mao, C. Wagner, F. Zhu, C. C. Chou, and A. I. King. Modeling of the Brain for Injury Prevention. In: Studies in Mechanobiology, Tissue Engineering and Biomaterials, edited by L. E. Bilston. Springer-Verlag Berlin Heidelberg, 2011, pp. 69–120. http://www.springerlink.com/index/U7368378332M5820.pdf.

  40. Zhang, L., K. H. Yang, R. Dwarampudi, K. Omori, T. Li, K. Chang, W. N. Hardy, T. B. Khalil, and A. I. King. Recent advances in brain injury research: a new human head model development and validation. Stapp Car Crash J. 45:369–394, 2001.

    CAS  PubMed  Google Scholar 

  41. Zhao, W., Y. Cai, Z. Li, and S. Ji. Injury prediction and vulnerability assessment using strain and susceptibility measures of the deep white matter. Biomech. Model. Mechanobiol. 16:1709–1727, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao, W., B. Choate, and S. Ji. Material properties of the brain in injury-relevant conditions—experiments and computational modeling. J. Mech. Behav. Biomed. Mater. 80:222–234, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao, W., J. C. Ford, L. A. Flashman, T. W. McAllister, and S. Ji. White matter injury susceptibility via fiber strain evaluation using whole-brain tractography. J. Neurotrauma 33:1834–1847, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhao, W., and S. Ji. White matter anisotropy for impact simulation and response sampling in traumatic brain injury. J. Neurotrauma 2018:5, 2018.

    Article  Google Scholar 

  45. Zhao, W., C. Kuo, L. Wu, D. B. Camarillo, and S. Ji. Performance evaluation of a pre-computed brain response atlas in dummy head impacts. Ann. Biomed. Eng. 45:2437–2450, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhao, W., and S. Ji. Parametric investigation of regional brain strain responses via a pre-computed atlas. IRCOBI Conf. 208–220, 2015.

Download references

Acknowledgment

Funding is provided by the NIH Grants R01 NS092853 and R21 NS088781.

Disclosure

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbai Ji.

Additional information

Associate Editor Raj K. Prabhu oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2016 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Ji, S. Mesh Convergence Behavior and the Effect of Element Integration of a Human Head Injury Model. Ann Biomed Eng 47, 475–486 (2019). https://doi.org/10.1007/s10439-018-02159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02159-z

Keywords

Navigation