Skip to main content
Log in

Novel In Vitro Test Systems and Insights for Transcatheter Mitral Valve Design, Part II: Radial Expansion Forces

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Transcatheter mitral valve (TMV) replacement technology has great clinical potential for surgically inoperable patients suffering from mitral regurgitation. An important goal for robust TMV design is maximizing the likelihood of achieving a geometry post-implant that facilitates optimal performance. To support this goal, improved understanding of the annular forces that oppose TMV radial expansion is necessary. In Part II of this study, novel circular and D-shaped Radial Expansion Force Transducers (C-REFT and D-REFT) were developed and employed in porcine hearts (N = 12), to detect the forces required to radially expand the mitral annulus to discrete oversizing levels. Forces on both the septal-lateral and inter-commissural axes (FSL and FIC) scaled with device size. The D-REFT experienced lower FSL than the C-REFT (19.8 ± 7.4 vs. 17.4 ± 10.8 N, p = 0.002) and greater FIC (31.5 ± 14.0 vs. 36.9 ± 16.2 N; p = 0.002), and was more sensitive to degree of oversizing. Across all tests, FIC/FSL was 2.21 ± 1.33, likely reflecting low resistance to radial expansion at the aorto-mitral curtain. In conclusion, the annular forces opposing TMV radial expansion are non-uniform, and depend on final TMV shape and size. Based on this two-part study, we propose that radial force applied at the commissural aspect of the annulus has the most potent effect on paravalvular sealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

C:

Circular

D:

D-shaped

IC:

Inter-commissural

LV:

Left ventricle

µCT:

Micro-computed tomography

MV:

Mitral valve

PVL:

Paravalvular leakage

REFT:

Radial Expansion Force Transducer

SL:

Septal-lateral

TMV:

Transcatheter mitral valve

TMVR:

Transcatheter mitral valve replacement

References

  1. Carrel, T. Transcatheter mitral valve replacement: still a long way to go!. Ann. Transl. Med. 5(17):352, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  2. De Backer, O., N. Piazza, S. Banai, G. Lutter, F. Maisano, H. C. Herrmann, O. W. Franzen, and L. Søndergaard. Percutaneous transcatheter mitral valve replacement: an overview of devices in preclinical and early clinical evaluation. Circulation 7:400–409, 2014.

    PubMed  Google Scholar 

  3. Guerrero, M., D. Dvir, D. Himbert, M. Urena, M. Eleid, D. D. Wang, A. Greenbaum, V. S. Mahadevan, D. Holzhey, and D. O’Hair. Transcatheter mitral valve replacement in native mitral valve disease with severe mitral annular calcification: results from the first multicenter global registry. JACC Cardiovasc. Interv. 9:1361–1371, 2016.

    Article  PubMed  Google Scholar 

  4. Gunning, G. M., and B. P. Murphy. Determination of the tensile mechanical properties of the segmented mitral valve annulus. J. Biomech. 47:334–340, 2014.

    Article  PubMed  Google Scholar 

  5. Hearse, D. J., P. B. Garlick, and S. M. Humphrey. Ischemic contracture of the myocardium: mechanisms and prevention. Am. J. Cardiol. 39:986–993, 1977.

    Article  CAS  PubMed  Google Scholar 

  6. Jeevan, R. R., and B. M. Murari. Engineering challenges and the future prospects of transcatheter mitral valve replacement technologies: a comprehensive review of case studies. Expert Rev. Med. Devices 14:297–307, 2017.

    Article  CAS  PubMed  Google Scholar 

  7. Meredith, I., V. Bapat, J. Morriss, M. McLean, and B. Prendergast. Intrepid transcatheter mitral valve replacement system: technical and product description. EuroIntervention 12:Y78, 2016.

    Article  Google Scholar 

  8. Mirabel, M., B. Iung, G. Baron, D. Messika-Zeitoun, D. Détaint, J.-L. Vanoverschelde, E. G. Butchart, P. Ravaud, and A. Vahanian. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur. Heart J. 28:1358–1365, 2007.

    Article  PubMed  Google Scholar 

  9. Pierce, E. L., C. H. Bloodworth, A. Naran, T. F. Easley, M. O. Jensen, and A. P. Yoganathan. Novel method to track soft tissue deformation by micro-computed tomography: application to the mitral valve. Ann. Biomed. Eng. 44:2273–2281, 2016.

    Article  PubMed  Google Scholar 

  10. Pierce, E. L., V. Sadri, B. Ncho, K. Kohli, S. Shah and A. P. Yoganathan. Novel in vitro test systems and insights for transcatheter mitral valve design, part I: paravalvular leakage. Ann. Biomed. Eng., 2018. https://doi.org/10.1007/s10439-018-02154-4.

    Article  PubMed  Google Scholar 

  11. Pierce, E. L., A. W. Siefert, D. M. Paul, S. K. Wells, C. H. Bloodworth, S. Takebayashi, C. Aoki, M. O. Jensen, M. J. Gillespie, and R. C. Gorman. How local annular force and collagen density govern mitral annuloplasty ring dehiscence risk. Ann. Thorac. Surg. 102:518–526, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rausch, M. K., W. Bothe, J.-P. E. Kvitting, J. C. Swanson, N. B. Ingels, Jr, D. C. Miller, and E. Kuhl. Characterization of mitral valve annular dynamics in the beating heart. Ann. Biomed. Eng. 39:1690–1702, 2011.

    Article  PubMed  Google Scholar 

  13. Siefert, A. W., J. H. Jimenez, K. J. Koomalsingh, D. S. West, F. Aguel, T. Shuto, R. C. Gorman, J. H. Gorman, and A. P. Yoganathan. Dynamic assessment of mitral annular force profile in an ovine model. Ann. Thorac. Surg. 94:59–65, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vanderwee, M. A., S. M. Humphrey, J. B. Gavin, and L. C. Armiger. Changes in the contractile state, fine structure and metabolism of cardiac muscle cells during the development of rigor mortis. Virchows Archiv B 35:159, 1980.

    Article  Google Scholar 

  15. Wang, D. D., M. Eng, A. Greenbaum, E. Myers, M. Forbes, M. Pantelic, T. Song, C. Nelson, G. Divine, and A. Taylor. Predicting LVOT obstruction after TMVR. JACC Cardiovasc Imaging 9:1349, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Young, M., A. Erdemir, S. Stucke, R. Klatte, B. Davis, and J. L. Navia. Simulation based design and evaluation of a transcatheter mitral heart valve frame. J. Med. Devices 6:031005, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Science Foundation (DGE-1148903; ELP), and by the National Heart, Lung, and Blood Institute (R01HL113216). The authors thank Dr. Joseph Gorman for his contributions to study design, 3D Printing Tech, Atlanta, GA, for their 3D printing/manufacturing expertise, and Holifield Farms, Covington, GA, for donating porcine hearts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierce, E.L., Kohli, K., Ncho, B. et al. Novel In Vitro Test Systems and Insights for Transcatheter Mitral Valve Design, Part II: Radial Expansion Forces. Ann Biomed Eng 47, 392–402 (2019). https://doi.org/10.1007/s10439-018-02139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02139-3

Keywords

Navigation