Skip to main content
Log in

Biomechanical Analysis of Porcine Cartilage Elasticity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Grafting of tissue-engineered cartilage to joints with osteoarthritis has the potential to supersede arthroplasty as the standard of care. However, in order to support the development of functional tissue engineering methods, the subfailure biomechanics of the individual cartilage types that comprise joints must be determined. Current methods for analyzing tissues are based on imaging and are therefore unable to profile the strain dependence of mechanical behaviors within different cartilage types. Recently, an analysis technique based on Optical Fiber Polarimetric Elastography (OFPE) has overcome these challenges. OFPE has been used to characterize the different mechanical behaviors of a range of unprocessed biomaterials and tissues. In the present work, this technique is used to characterize the biomechanics of both articular cartilage and meniscal fibrocartilage within a porcine knee. OFPE testing of the tissue is conducted over a range of physiological loading and unloading values. These results demonstrate the distinctive mechanics of each cartilage type. Due to their different locations within the knee, each cartilage type exhibits distinctly unique biomechanical behavior. Based on the results of OFPE, we correlate the specific buckling, delamination, and bridging events to maxima and minima along the loading and unloading curves. This provides unprecedented detail with regard to the subfailure biomechanics. This information is integral to the design of the next generation of tissue-engineered constructs. Therefore, OFPE will be used across multiple disciplines to rapidly determine the mechanical behavior of tissue-engineered constructs to support functional tissue engineering efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abdelgaied, A., M. Stanley, M. Galfe, H. Berry, E. Ingham, and J. Fisher. Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus. J. Biomech. 48:1389–1396, 2015.

    Article  CAS  PubMed  Google Scholar 

  2. Ambroziński, Ł., S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity. Sci. Rep. 6:38967, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Armiento, A. R., M. J. Stoddart, M. Alini, and D. Eglin. Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater. 65:1–20, 2018.

    Article  CAS  PubMed  Google Scholar 

  4. Ateshian, G. A., M. P. Rosenwasser, and V. C. Mow. Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints. J. Biomech. 25:591–607, 1992.

    Article  CAS  PubMed  Google Scholar 

  5. Athanasiou, K. A., M. P. Rosenwasser, J. A. Buckwalter, T. I. Malinin, and V. C. Mow. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 9:330–340, 1991.

    Article  CAS  PubMed  Google Scholar 

  6. Bate-Smith, E. C., and J. R. Bendall. Factors determining the time course of rigor mortis. J. Physiol. 110:47–65, 1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bennett, L. D., and J. C. Buckland-Wright. Meniscal and articular cartilage changes in knee osteoarthritis: a cross-sectional double-contrast macroradiographic study. Rheumatology 41:917–923, 2002.

    Article  CAS  PubMed  Google Scholar 

  8. Buckley, M. R., J. P. Gleghorn, L. J. Bonassar, and I. Cohen. Mapping the depth dependence of shear properties in articular cartilage. J. Biomech. 41:2430–2437, 2008.

    Article  PubMed  Google Scholar 

  9. Butcher, D. T., T. Alliston, and V. M. Weaver. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9:108–122, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Butler, D. L., S. A. Goldstein, and F. Guilak. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. Trans. ASME 122:570–575, 2000.

    Article  CAS  Google Scholar 

  11. Daniel, I. M., E. E. Gdoutos, K.-A. Wang, and J. L. Abot. Failure modes of composite sandwich beams. Int. J. Damage Mech. 11:309–334, 2002.

    Article  CAS  Google Scholar 

  12. Fan, H., L. Yang, F. Sun, and D. Fang. Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites. Composites A 52:118–125, 2013.

    Article  CAS  Google Scholar 

  13. Fisher, M. B., E. A. Henning, N. B. Söegaard, G. R. Dodge, D. R. Steinberg, and R. L. Mauck. Maximizing cartilage formation and integration via a trajectory-based tissue engineering approach. Biomaterials 35:2140–2148, 2014.

    Article  CAS  PubMed  Google Scholar 

  14. Fox, Alice J. S., A. Bedi, and S. A. Rodeo. The Basic Science of Human Knee Menisci: structure, Composition, and Function’. Sports Health 4:340–351, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1981.

    Book  Google Scholar 

  16. Guterl, C. C., T. R. Gardner, V. Rajan, C. S. Ahmad, C. T. Hung, and G. A. Ateshian. Two-dimensional strain fields on the cross-section of the human patellofemoral joint under physiological loading. J. Biomech. 42:1275–1281, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harrison, M. C., and A. M. Armani. Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis. Appl. Phys. Lett. 106:191105, 2015.

    Article  CAS  Google Scholar 

  18. Hori, R. Y., and L. F. Mockros. Indentation tests of human articular cartilage. J. Biomech. 9:259–268, 1976.

    Article  CAS  PubMed  Google Scholar 

  19. Hudnut, A. W., and A. M. Armani. High-resolution analysis of the mechanical behavior of tissue. Appl. Phys. Lett. 110:243701, 2017.

    Article  CAS  Google Scholar 

  20. Hudnut, A. W., B. Babaei, S. Liu, B. K. Larson, S. M. Mumenthaler, and A. M. Armani. Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry. Biomed. Opt. Express 8:4663–4670, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hudnut, A. W., L. Lash-Rosenberg, A. Xin, J. A. Leal Doblado, C. Zurita-Lopez, Q. Wang, and A. M. Armani. Role of extracellular matrix in the biomechanical behavior of pancreatic tissue. ACS Biomater. Sci. Eng. 4(5):1916–1923, 2018.

    CAS  Google Scholar 

  22. Jiang, Y., and Q. Wang. Highly-stretchable 3D-architected mechanical metamaterials. Sci. Rep. 6:34147, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joseph, E. Petrzelka, and E. Hardt David. Static load-displacement behavior of PDMS microfeatures for soft lithography. J. Micromech. Microeng. 22:075015, 2012.

    Article  CAS  Google Scholar 

  24. Kuo, C. K., W.-J. Li, R. L. Mauck, and R. S. Tuan. Cartilage tissue engineering: its potential and uses. Curr. Opin. Rheumatol. 18:64–73, 2006.

    Article  PubMed  Google Scholar 

  25. Lai, J. H., and M. E. Levenston. Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression’. Osteoarthritis Cartilage 18:1291–1299, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, Q., Q. Feini, B. Han, C. Wang, H. Li, R. L. Mauck, and L. Han. Micromechanical anisotropy and heterogeneity of the meniscus extracellular matrix. Acta Biomater. 54:356–366, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Malekipour, F., C. Whitton, D. Oetomo, and P. V. S. Lee. Shock absorbing ability of articular cartilage and subchondral bone under impact compression. J. Mech. Behav. Biomed. Mater. 26:127–135, 2013.

    Article  PubMed  Google Scholar 

  28. Mow, V. C., A. Ratcliffe, and A. Robin Poole. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97, 1992.

    Article  CAS  PubMed  Google Scholar 

  29. Mow, V. C., C. C. Wang, and C. T. Hung. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthritis Cartilage 7:41–58, 1999.

    Article  CAS  PubMed  Google Scholar 

  30. O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14:88–95, 2011.

    Article  CAS  Google Scholar 

  31. Segal, N. A., M. C. Nevitt, J. A. Lynch, J. Niu, J. C. Torner, and A. Guermazi. Diagnostic performance of 3D standing CT imaging for detection of knee osteoarthritis features. Phys. Sportsmed. 43:213–220, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shirazi, R., A. Shirazi-Adl, and M. Hurtig. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J. Biomech. 41:3340–3348, 2008.

    Article  CAS  PubMed  Google Scholar 

  33. Sun, M. H., H. H. He, N. Zeng, E. Du, Y. H. Guo, S. X. Liu, J. Wu, Y. H. He, and H. Ma. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express 5:4223–4234, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu, C. Mechanochemitry: a molecular biomechanics view of mechanosensing. Ann. Biomed. Eng. 42:388–404, 2014.

    Article  PubMed  Google Scholar 

  35. Zimmermann, E. A., B. Busse, and R. O. Ritchie. The fracture mechanics of human bone: influence of disease and treatment. Bonekey Rep. 4:743, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank R.A. Arboleda, D. Chen, D. Cummins, N. Katkhouda, A. Kovach, S. Liu, S. Mumenthaler, and V. Sun. This work was supported by the Office of Naval Research [N00014-17-2270] and the A. E. Mann Graduate Research Fellowship. The study was conducted at the University of Southern California under Department of Animal Resource Tissue Request Form 10843.

Conflict of interest

The Optical Fiber Polarimetric Elastography (OFPE) instrument used in this work is patented by A.M. Armani, A. W. Hudnut, and their institution (US Patent 9791333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Armani.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudnut, A.W., Trasolini, N.A., Hatch, G.F.R. et al. Biomechanical Analysis of Porcine Cartilage Elasticity. Ann Biomed Eng 47, 202–212 (2019). https://doi.org/10.1007/s10439-018-02133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02133-9

Keywords

Navigation