Skip to main content
Log in

Stochastic Resonance with Dynamic Compression Improves the Growth of Adult Chondrocytes in Agarose Gel Constructs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Dynamic mechanical stimulation has been an effective method to improve the growth of tissue engineering cartilage constructs derived from immature cells. However, when more mature cell populations are used, results are often variable due to the differing responses of these cells to external stimuli. This can be especially detrimental in the case of mechanical loading. In previous studies, multi-modal mechanical stimulation in the form of stochastic resonance was shown to be effective at improving the growth of young bovine chondrocytes. Thus, the aim of this study was to investigate the short-term and long-term effects of stochastic resonance on two groups of bovine chondrocytes, adult (> 30 month) and juvenile (~ 18 months). While the juvenile cells outperformed the adult cells in terms of their anabolic response to loading, combined mechanical loading for both age groups resulted in greater matrix synthesis compared to compressive loading alone. In the adult cells, potential pathological tissue formation was evident with the presence of cell clustering. However, the presence of broad-band mechanical vibrations (alone or with compressive loading) appeared to mitigate this response and allow these cells to attain a growth response similar to the juvenile, unstimulated cells. Therefore, the use of stochastic resonance appears to show promise as a method to improve the formation and properties of tissue engineered cartilage constructs, irrespective of cell age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Akizuki, S., V. C. Mow, F. Müller, J. C. Pita, D. S. Howell, and D. H. Manicourt. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J. Orthop. Res. 4:379–392, 1986.

    Article  CAS  PubMed  Google Scholar 

  2. Alexopoulos, L. G., I. Youn, P. Bonaldo, and F. Guilak. Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix. Arthritis Rheum. 60:771–779, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arikawa-Hirasawa, E., W. R. Wilcox, and Y. Yamada. Dyssegmental dysplasia, Silverman–Handmaker type: unexpected role of perlecan in cartilage development. Am. J. Med. Genet. 106:254–257, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Barbero, A., S. Grogan, D. Schäfer, M. Heberer, P. Mainil-Varlet, and I. Martin. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr. Cartil. 12:476–484, 2004.

    Article  PubMed  Google Scholar 

  5. Bloch-Salisbury, E., P. Indic, F. Bednarek, and D. Paydarfar. Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J. Appl. Physiol. 107:1017–1027, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brady, M. A., S. D. Waldman, and C. R. Ethier. The application of multiple biophysical cues to engineer functional neo-cartilage for treatment of osteoarthritis (part I: cellular response). Tissue Eng. Part B Rev. 21:1–19, 2015.

    Article  PubMed  Google Scholar 

  7. Brandt, K., M. Doherty, and L. Lohmander. Composition and structure of articular cartilage. In: Osteoarthritis, edited by K. Brandt, M. Doherty, and L. Lohmander. New York: Oxford University Press, 1998, pp. 110–111.

    Google Scholar 

  8. Brighton, C. T., W. Wang, and C. C. Clark. The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. J. Bone Jt. Surg. Am. 90:833–848, 2008.

    Article  Google Scholar 

  9. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, J. H. Kimura, and E. B. Hunziker. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10:745–758, 1992.

    Article  CAS  PubMed  Google Scholar 

  10. Byers, B. A., R. L. Mauck, I. E. Chiang, and R. S. Tuan. Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Eng. Part A 14:1821–1834, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carter, D. R., G. S. Beaupre, M. Wong, R. L. Smith, T. P. Andriacchi, and D. J. Schurman. The mechanobiology of articular cartilage development and degeneration. Clin. Orthop. Relat. Res. 427:S69–S77, 2004.

    Article  Google Scholar 

  12. Castillo, A. B., I. Alam, S. M. Tanaka, J. Levenda, J. Li, S. J. Warden, and C. H. Turner. Low-amplitude, broad-frequency vibration effects on cortical bone formation in mice. Bone 39:1087–1096, 2006.

    Article  PubMed  Google Scholar 

  13. Caterson, B., and D. A. Lowther. Changes in the metabolism of the proteoglycans from sheep articular cartilage in response to mechanical stress. Biochim. Biophys. Acta Gen. Subj. 540:412–422, 1978.

    Article  CAS  Google Scholar 

  14. Fan, J. C. Y., and S. D. Waldman. The effect of intermittent static biaxial tensile strains on tissue engineered cartilage. Ann. Biomed. Eng. 38:1672–1682, 2010.

    Article  PubMed  Google Scholar 

  15. Farnsworth, N. L., L. R. Antunez, and S. J. Bryant. Dynamic compressive loading differentially regulates chondrocyte anabolic and catabolic activity with age. Biotechnol. Bioeng. 110:2046–2057, 2013.

    Article  CAS  PubMed  Google Scholar 

  16. Forsyth, C. B., A. Cole, G. Murphy, J. L. Bienias, H.-J. Im, and R. F. Loeser. Increased matrix metalloproteinase-13 production with aging by human articular chondrocytes in response to catabolic stimuli. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 60:1118–1124, 2005.

    Article  Google Scholar 

  17. Hung, C. T., R. L. Mauck, C. C.-B. Wang, E. G. Lima, and G. A. Ateshian. A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann. Biomed. Eng. 32:35–49, 2004.

    Article  PubMed  Google Scholar 

  18. Kaupp, J. A., and S. D. Waldman. Mechanical vibrations increase the proliferation of articular chondrocytes in high-density culture. Proc. Inst. Mech. Eng. Part H 222:695–703, 2008.

    Article  CAS  Google Scholar 

  19. Kaupp, J. A., J. F. Weber, and S. D. Waldman. Mechanical stimulation of chondrocyte-agarose hydrogels. J. Vis. Exp. 2012. https://doi.org/10.3791/4229.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Keene, D. R., E. Engvall, and R. W. Glanville. Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J. Cell Biol. 107:1995–2006, 1988.

    Article  CAS  PubMed  Google Scholar 

  21. Kiviranta, I., J. Jurvelin, M. Tammi, A.-M. SääMäunen, and H. J. Helminen. Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum 30:801–809, 1987.

    Article  CAS  PubMed  Google Scholar 

  22. Knudson, C. B., and W. Knudson. Cartilage proteoglycans. Semin. Cell Dev. Biol. 12:69–78, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, D. A., and M. M. Knight. Mechanical loading of chondrocytes embedded in 3D constructs: in vitro methods for assessment of morphological and metabolic response to compressive strain. Methods Mol. Med. 100:307–324, 2004.

    CAS  PubMed  Google Scholar 

  24. Leung, M. K., L. I. Fessler, D. B. Greenberg, and J. H. Fessler. Separate amino and carboxyl procollagen peptidases in chick embryo tendon. J. Biol. Chem. 254:224–232, 1979.

    CAS  PubMed  Google Scholar 

  25. Martin, J. A., S. M. Ellerbroek, and J. A. Buckwalter. Age-related decline in chondrocyte response to insulin-like growth factor-I: the role of growth factor binding proteins. J. Orthop. Res. 15:491–498, 1997.

    Article  CAS  PubMed  Google Scholar 

  26. Mauck, R. L., and M. A. Soltz. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomed. Eng. 122:252–260, 2000.

    CAS  Google Scholar 

  27. Mesa, J. M., V. Zaporojan, C. Weinand, T. S. Johnson, L. Bonassar, M. A. Randolph, M. J. Yaremchuk, and P. E. Butler. Tissue engineering cartilage with aged articular chondrocytes in vivo. Plast. Reconstr. Surg. 118:41–49, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Ongaro, A., A. Pellati, F. F. Masieri, A. Caruso, S. Setti, R. Cadossi, R. Biscione, L. Massari, M. Fini, and M. De Mattei. Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics 32:543–551, 2011.

    Article  CAS  PubMed  Google Scholar 

  29. Quinn, T. M., P. Schmid, E. B. Hunziker, and A. J. Grodzinsky. Proteoglycan deposition around chondrocytes in agarose culture: construction of a physical and biological interface for mechanotransduction in cartilage. Amsterdam: IOS Press, 2002.

    Google Scholar 

  30. Söder, S., L. Hambach, R. Lissner, T. Kirchner, and T. Aigner. Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage. Osteoarthr. Cartil. 10:464–470, 2002.

    Article  PubMed  Google Scholar 

  31. Tanaka, S. M., J. Li, R. L. Duncan, H. Yokota, D. B. Burr, and C. H. Turner. Effects of broad frequency vibration on cultured osteoblasts. J. Biomech. 36:73–80, 2003.

    Article  PubMed  Google Scholar 

  32. Thonar, E., L. Lohmander, J. Kimura, S. Fellini, M. Yanagishita, and V. Hascall. Biosynthesis of O-linked oligosaccharides on proteoglycans by chondrocytes from the swarm rat chondrosarcoma. J. Biol. Chem. 258:11564–11570, 1983.

    CAS  PubMed  Google Scholar 

  33. Tran-Khanh, N., C. D. Hoemann, M. D. McKee, J. E. Henderson, and M. D. Buschmann. Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J. Orthop. Res. 23:1354–1362, 2005.

    Article  CAS  PubMed  Google Scholar 

  34. Waldman, S., and D. Couto. Multi-axial mechanical stimulation of tissue engineered cartilage: review. Eur. Cell. Mater. 13:66–73, 2007.

    Article  CAS  PubMed  Google Scholar 

  35. Waldman, S. D., C. G. Spiteri, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng. 10:1323–1331, 2004.

    Article  CAS  PubMed  Google Scholar 

  36. Weber, J. F., and S. D. Waldman. Calcium signaling as a novel method to optimize the biosynthetic response of chondrocytes to dynamic mechanical loading. Biomech. Model. Mechanobiol. 13:1387–1397, 2014.

    Article  PubMed  Google Scholar 

  37. Weber, J. F., and S. D. Waldman. Stochastic resonance is a method to improve the biosynthetic response of chondrocytes to mechanical stimulation. J. Orthop. Res. 34:231–239, 2016.

    Article  CAS  PubMed  Google Scholar 

  38. Wernike, E., Z. Li, M. Alini, and S. Grad. Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs. Cell Tissue Res. 331:473–483, 2008.

    Article  CAS  PubMed  Google Scholar 

  39. Wilusz, R. E., L. E. DeFrate, and F. Guilak. A biomechanical role for perlecan in the pericellular matrix of articular cartilage. Matrix Biol. 31:320–327, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Waldman.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, J.F., Chiu, L.L., Balko, S. et al. Stochastic Resonance with Dynamic Compression Improves the Growth of Adult Chondrocytes in Agarose Gel Constructs. Ann Biomed Eng 47, 243–256 (2019). https://doi.org/10.1007/s10439-018-02123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02123-x

Keywords

Navigation