Skip to main content
Log in

Sinus Hemodynamics Variation with Tilted Transcatheter Aortic Valve Deployments

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Leaflet thrombosis is a complication associated with transcatheter aortic valve (TAV) replacement (TAVR) correlated with sinus flow stasis. Sinus hemodynamics are important because they dictate shear stress and washout necessary to avoid stasis on TAV leaflets. Sinus flow is controlled by TAV axial deployment position but little is known regarding TAV axis misalignment effect. This study aims to elucidate TAV angular misalignment with respect to aortic root axis effect on sinus flow stasis potentially leading to leaflet thrombosis. Sinus hemodynamics were assessed in vitro using particle-image velocimetry in three different angular misalignments with respect to aorta axis: untilted, tilted away from the sinus and tilted towards sinus. A 26 mm Edwards SAPIEN3 was implanted in a 3D printed model of an anatomically realistic aortic root. TAV hemodynamics, sinus vortex tracking, leaflet shear stress probability density functions, and sinus blood time to washout were calculated. While pressure gradients differed insignificantly, blood velocity and vorticity decreased significantly in both tilted cases sinuses. Shear stress probability near the leaflet decreases with tilt indicating stasis. TAV tilted away from the sinus is the most unfavorable scenario with poor washout. TAV axial misalignment adds to factors list that could influence leaflet thrombosis risk through modifying sinus hemodynamics and washout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bark, D. L., A. N. Para, and D. N. Ku. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol. Bioeng. 109:2642–2650, 2012.

    Article  CAS  PubMed  Google Scholar 

  2. Berk, B. C., J. I. Abe, W. Min, J. Surapisitchat, and C. Yan. Endothelial atheroprotective and anti-inflammatory mechanisms. Ann. N. Y. Acad. Sci. 947:93–111, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Casa, L. D., D. H. Deaton, and D. N. Ku. Role of high shear rate in thrombosis. J. Vasc. Surg. 61:1068–1080, 2015.

    Article  PubMed  Google Scholar 

  4. Chakravarty, T., L. Søndergaard, J. Friedman, O. De Backer, D. Berman, K. F. Kofoed, H. Jilaihawi, T. Shiota, Y. Abramowitz, and T. H. Jørgensen. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet 389(10087):2383–2392, 2017.

    Article  Google Scholar 

  5. Chandra, S., N. M. Rajamannan, and P. Sucosky. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech. Model Mechanobiol. 11:1085–1096, 2012.

    Article  PubMed  Google Scholar 

  6. Cunningham, K. S., and A. I. Gotlieb. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Investig. 85:9, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Dasi, L. P., H. Hatoum, A. Kheradvar, R. Zareian, S. H. Alavi, W. Sun, C. Martin, T. Pham, Q. Wang, and P. A. Midha. On the mechanics of transcatheter aortic valve replacement. Ann. Biomed. Eng. 45:310–331, 2017.

    Article  PubMed  Google Scholar 

  8. Dhanak, M., and B. D. Bernardinis. The evolution of an elliptic vortex ring. J. Fluid Mech. 109:189–216, 1981.

    Article  Google Scholar 

  9. Didden, N. On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math. Phys. (ZAMP) 30:101–116, 1979.

    Article  Google Scholar 

  10. Forleo, M., and L. P. Dasi. Effect of hypertension on the closing dynamics and lagrangian blood damage index measure of the B-Datum Regurgitant Jet in a bileaflet mechanical heart valve. Ann. Biomed. Eng. 42:110–122, 2014.

    Article  PubMed  Google Scholar 

  11. Gilard, M., H. Eltchaninoff, B. Iung, P. Donzeau-Gouge, K. Chevreul, J. Fajadet, P. Leprince, A. Leguerrier, M. Lievre, and A. Prat. Registry of transcatheter aortic-valve implantation in high-risk patients. N. Engl. J. Med. 366:1705–1715, 2012.

    Article  CAS  PubMed  Google Scholar 

  12. Hatoum, H., J. A. Crestanello, and L. P. Dasi. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 374:1591–1591, 2016.

    PubMed  Google Scholar 

  13. Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 2018.

  14. Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann. Thorac. Surg. 2018.

  15. Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Effect of severe bioprosthetic valve tissue ingrowth and inflow calcification on valve-in-valve performance. J. Biomech. 74:171–179, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hatoum, H., F. Heim, and L. P. Dasi. Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices. J. Mech. Behav. Biomed. Mater. 86:232–239, 2018.

    Article  CAS  PubMed  Google Scholar 

  17. Hatoum, H., B. L. Moore, and L. P. Dasi. On the significance of systolic flow waveform on aortic valve energy loss. Ann. Biomed. Eng. 2018.

  18. Hatoum, H., B. L. Moore, P. Maureira, J. Dollery, J. A. Crestanello, and L. P. Dasi. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 154(1):32–43, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hatoum, H., B. L. Moore, P. Maureira, J. Dollery, J. A. Crestanello, and L. P. Dasi. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 154(32–43):e1, 2017.

    Google Scholar 

  20. Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An in-vitro evaluation of turbulence after transcatheter aortic valve implantation. J Thorac. Cardiovasc. Surg. 2018.

  21. Kasel, A. M., S. Cassese, S. Bleiziffer, M. Amaki, R. T. Hahn, A. Kastrati, and P. P. Sengupta. Standardized imaging for aortic annular sizing. JACC 6:249–262, 2013.

    PubMed  Google Scholar 

  22. Klotz, S., M. Scharfschwerdt, D. Richardt, and H. H. Sievers. Failed valve-in-valve transcatheter aortic valve implantation. JACC 5:591–592, 2012.

    PubMed  Google Scholar 

  23. Kumar, G., V. Raghav, S. Lerakis, and A. P. Yoganathan. High transcatheter valve replacement may reduce washout in the aortic sinuses: an in-vitro study. J. Heart Valve Dis. 24:22–29, 2015.

    CAS  PubMed  Google Scholar 

  24. Lerakis, S., S. S. Hayek, and P. S. Douglas. Paravalvular aortic leak after transcatheter aortic valve replacement. Circulation 127:397–407, 2013.

    Article  PubMed  Google Scholar 

  25. Makkar, R. R., G. Fontana, H. Jilaihawi, T. Chakravarty, K. F. Kofoed, O. De Backer, F. M. Asch, C. E. Ruiz, N. T. Olsen, and A. Trento. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 373:2015–2024, 2015.

    Article  CAS  PubMed  Google Scholar 

  26. Mangione, F. M., T. Jatene, A. Gonçalves, G. A. Fishbein, R. N. Mitchell, M. P. Pelletier, T. Kaneko, P. B. Shah, C. B. Nyman, and D. Shook. Leaflet thrombosis in surgically explanted or post-mortem TAVR valves. JACC 1:82–85, 2017.

    Google Scholar 

  27. Maragiannis, D., M. S. Jackson, S. R. Igo, R. C. Schutt, P. Connell, J. Grande-Allen, C. M. Barker, S. M. Chang, M. J. Reardon, and W. A. Zoghbi. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circulation 8:e003626, 2015.

    PubMed  Google Scholar 

  28. Midha, P. A., V. Raghav, I. Okafor, and A. P. Yoganathan. The effect of valve-in-valve implantation height on sinus flow. Ann. Biomed. Eng. 1–8, 2016.

  29. Mittal, R., P. Rampunggoon, and H. Udaykumar. Interaction of a synthetic jet with a flat plate boundary layer. AIAA Pap. 2773:1, 2001.

    Google Scholar 

  30. Moore, B. L., and L. P. Dasi. Coronary flow impacts aortic leaflet mechanics and aortic sinus hemodynamics. Ann. Biomed. Eng. 43:2231–2241, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Peacock, J. A. An in vitro study of the onset of turbulence in the sinus of Valsalva. Circ. Res. 67:448–460, 1990.

    Article  CAS  PubMed  Google Scholar 

  32. Saw, S. N., C. Dawn, A. Biswas, C. N. Z. Mattar, and C. H. Yap. Characterization of the in vivo wall shear stress environment of human fetus umbilical arteries and veins. Biomech. Model. Mechanobiol. 16:197–211, 2017.

    Article  PubMed  Google Scholar 

  33. Toggweiler, S., K. Schmidt, M. Paul, F. Cuculi, R. Kobza, and P. Jamshidi. Valve thrombosis 3 years after transcatheter aortic valve implantation. Int. J. Cardiol. 207:122–124, 2016.

    Article  PubMed  Google Scholar 

  34. Trantalis, G., K. Toutouzas, G. Latsios, A. Synetos, S. Brili, D. Logitsi, V. Penesopoulou, and D. Tousoulis. TAVR and thrombosis. JACC 10:86–87, 2017.

    PubMed  Google Scholar 

  35. Traub, O., and B. C. Berk. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18:677–685, 1998.

    Article  CAS  PubMed  Google Scholar 

  36. Vahidkhah, K., and A. N. Azadani. Supra-annular valve-in-valve implantation reduces blood stasis on the transcatheter aortic valve leaflets. J. Biomech. 58:114–122, 2017.

    Article  PubMed  Google Scholar 

  37. Walker, J., C. Smith, A. Cerra, and T. Doligalski. The impact of a vortex ring on a wall. J. Fluid Mech. 181:99–140, 1987.

    Article  CAS  Google Scholar 

  38. Wu, M., Y. Kouchi, Y. Onuki, Q. Shi, H. Yoshida, S. Kaplan, R. F. Viggers, R. Ghali, and L. R. Sauvage. Effect of differential shear stress on platelet aggregation, surface thrombosis, and endothelialization of bilateral carotid-femoral grafts in the dog. J. Vasc. Surg. 22:382–390, 1995; (discussion 390–392).

    Article  CAS  PubMed  Google Scholar 

  39. Yanagisawa, R., K. Hayashida, Y. Yamada, M. Tanaka, F. Yashima, T. Inohara, T. Arai, T. Kawakami, Y. Maekawa, and H. Tsuruta. Incidence, predictors, and mid-term outcomes of possible leaflet thrombosis after TAVR. JACC 10:1–11, 2017.

    Google Scholar 

  40. Yap, C. H., X. Liu, and K. Pekkan. Characterizaton of the vessel geometry, flow mechanics and wall shear stress in the great arteries of wildtype prenatal mouse. PLoS ONE 9:e86878, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research done was partly supported by National Institutes of Health (NIH) under Award Number R01HL119824.

Conflict of interest

Dr. Dasi reports having a patent application filed on novel polymeric valves, vortex generators, and superhydrophobic/superomniphobic heart valves, and Dr. Crestanello reports having grants from Medtronic, Boston Scientific and Abbot in addition to being part of the advisory board for Medtronic. No other conflicts were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Prasad Dasi.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatoum, H., Dollery, J., Lilly, S.M. et al. Sinus Hemodynamics Variation with Tilted Transcatheter Aortic Valve Deployments. Ann Biomed Eng 47, 75–84 (2019). https://doi.org/10.1007/s10439-018-02120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02120-0

Keywords

Navigation