A Combined Approach for the Analysis of Ocular Fluid Dynamics in the Presence of Saccadic Movements


One of the main ocular diseases is age-related macular degeneration, actually treated with antibodies injections into the eye. This problem has been faced by computational approaches, taking into account either the influence of the tissues surrounding the vitreous, or the saccades. The aim of this work is to propose a combined fluid dynamic model of the vitreous chamber that analyses the impact of the saccades on the fluid dynamic mechanisms. The ocular vitreous humor was modeled considering liquefaction occurring in presence of age-related macular degeneration. We identified two kinds of boundary conditions, one related to the physiological environment outside the chamber, and one related to the saccades. The scleral hydraulic conductivity was evaluated by means of experimental permeability tests. An exponential decay was used to describe the trend of the scleral hydraulic conductivity with the acting pressure drop. The streamline analysis shows two main stagnant regions on the equatorial plane and peculiar fluid dynamics in absence of saccades. This study demonstrates the major role played by the saccades in determining the fluid dynamic mechanisms inside the vitreous chamber of the eye and represents a powerful tool to investigate vitreous dynamics and its relation to clinical issues.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7



Age-related macular degeneration


Vascular endothelial growth factors


Particle image velocimetry


Computational fluid dynamics




Intraocular pressure


Hydraulic conductivity


  1. 1.

    Abouali, O., A. Modareszadeh, A. Ghaffariyeh, and J. Tu. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Med. Eng. Phys. 34:681–692, 2012.

    Article  PubMed  Google Scholar 

  2. 2.

    Argento, A., W. Kim, F. W. Rozsa, K. L. DeBolt, S. Zikanova, and J. R. Richards. Shear behavior of bovine scleral tissue. J. Biomech. Eng. 136:071011, 2014.

    Article  Google Scholar 

  3. 3.

    Balachandran, R. K., and V. H. Barocas. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm. Res. 25:2685–2696, 2008.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Balachandran, R. K., and V. H. Barocas. Contribution of saccadic motion to intravitreal drug transport: theoretical analysis. Pharm. Res. 28:1049–1064, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Balazs, E. A., and M. T. Flood. Age-related changes in the physical and chemical structure of human vitreous. Third International Congress of Eye Research, 1978.

  6. 6.

    Becker, W. The neurobiology of saccadic eye movements. Metrics. Rev. Oculomot. Res. 3:13, 1989.

    CAS  PubMed  Google Scholar 

  7. 7.

    Bhisitkul, R. B. Anticipation for enzymatic vitreolysis. Br. J. Ophthalmol. 85:1–2, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bonfiglio, A., A. Lagazzo, R. Repetto, and A. Stocchino. An experimental model of vitreous motion induced by eye rotations. Eye Vis. 2:10, 2015.

    Article  Google Scholar 

  9. 9.

    Chan, C. M., J. H. Yu, L. J. Chen, C. H. Huang, C. T. Lee, T. C. Lin, and D. Z. Liu. Posterior pole retinal thickness measurements by the retinal thickness analyzer in healthy Chinese subjects. Retina 26:176–181, 2006.

    Article  PubMed  Google Scholar 

  10. 10.

    Cima, M. J., H. Lee, K. Daniel, L. M. Tanenbaum, A. Mantzavinou, K. C. Spencer, Q. Ong, J. C. Sy, J. Santini, C. M. Schoellhammer, D. Blankschtein, and R. S. Langer. Single compartment drug delivery. J. Control Release 190:157–171, 2014.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    David, T., S. Smye, T. Dabbs, and T. James. A model for the fluid motion of vitreous humour of the human eye during saccadic movement. Phys. Med. Biol. 43:1385–1399, 1998.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Fatt, I., and B. O. Hedbys. Flow of water in the sclera. Exp. Eye Res. 10:243–249, 1970.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Ferrara, N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Publ. Gr. 16:1107–1111, 2010.

    CAS  Google Scholar 

  14. 14.

    Ferrara, N., H. P. Gerber, and J. LeCouter. The biology of VEGF and its receptors. Nat Med 9:669–676, 2003.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Friedrich, S., Y.-L. Cheng, and B. Saville. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr. Eye Res. 16:663–669, 1997.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Haghjou, N., M. J. Abdekhodaie, Y. L. Cheng, and M. Saadatmand. Computer modeling of drug distribution after intravitreal administration. World Acad. Sci. Eng. Technol. 77:706–716, 2011.

    Google Scholar 

  17. 17.

    Ikuno, Y., K. Kawaguchi, T. Nouchi, and Y. Yasuno. Choroidal thickness in healthy Japanese subjects. Investig. Opthalmol. Vis. Sci. 51:2173, 2010.

    Article  Google Scholar 

  18. 18.

    Jackson, T. L., A. Hussain, A. Hodgetts, A. M. S. Morley, J. Hillenkamp, P. M. Sullivan, and J. Marshall. Human scleral hydraulic conductivity: age-related changes, topographical variation, and potential scleral outflow facility. Investig. Ophthalmol. Vis. Sci. 47:4942–4946, 2006.

    Article  Google Scholar 

  19. 19.

    Lai, W. M., V. C. Mow, and V. Roth. Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J. Biomech. Eng. 103:61–66, 1981.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Lee, B., M. Litt, and G. Buchsbaum. Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous. Biorheology 29:521–533, 1992.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Loudon, C., and A. Tordesillas. The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. J. Theor. Biol. 191:63–78, 1998.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Missel, P. J. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm. Res. 19:1636–1647, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Modareszadeh, A., O. Abouali, A. Ghaffarieh, and G. Ahmadi. Saccade movements effect on the intravitreal drug delivery in vitreous substitutes: a numerical study. Biomech. Model. Mechanobiol. 12:281–290, 2013.

    Article  PubMed  Google Scholar 

  24. 24.

    Repetto, R., J. H. Siggers, and A. Stocchino. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomech. Model. Mechanobiol. 9:65–76, 2010.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Repetto, R., A. Stocchino, and C. Cafferata. Experimental investigation of vitreous humour motion within a human eye model. Phys. Med. Biol. 50:4729–4743, 2005.

    Article  PubMed  Google Scholar 

  26. 26.

    Romano, M. R., J. L. Vallejo-Garcia, V. Romano, M. Angi, P. Vinciguerra, and C. Costagliola. Thermodynamics of vitreoretinal surgery. Curr. Eye Res. 38:371–374, 2013.

    Article  PubMed  Google Scholar 

  27. 27.

    Rosenfeld, P. J., D. M. Brown, J. S. Heier, D. S. Boyer, P. K. Kaiser, C. Y. Chung, and R. Y. Kim. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355:1419–1431, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Rosenfeld, P. J., S. D. Schwartz, M. S. Blumenkranz, J. W. Miller, J. A. Haller, J. D. Reimann, W. L. Greene, and N. Shams. Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology 112:1048.e4–1053.e4, 2005.

    Article  Google Scholar 

  29. 29.

    Schwartz, S. G., I. U. Scott, H. W. Flynn, and M. W. Stewart. Drug delivery techniques for treating age-related macular degeneration. Expert Opin. Drug Deliv. 11:61–68, 2014.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Sekuler, R., D. Kline, and K. Dismukes. Aging and visual function of military pilots: a review. DTIC Document, 1982.

  31. 31.

    Stay, M. S., J. Xu, T. W. Randolph, and V. H. Barocas. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm. Res. 20:96–102, 2003.

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Stocchino, A., R. Repetto, and C. Cafferata. Eye rotation induced dynamics of a Newtonian fluid within the vitreous cavity: the effect of the chamber shape. Phys. Med. Biol. 52:2021–2034, 2007.

    Article  PubMed  Google Scholar 

  33. 33.

    Stocchino, A., R. Repetto, and J. H. Siggers. Mixing processes in the vitreous chamber induced by eye rotations. Phys. Med. Biol. 55:453–467, 2010.

    Article  PubMed  Google Scholar 

  34. 34.

    Vaiano, A. S., E. Coronado Quitllet, G. Zinzanella, G. De Benedetti, and G. Caramello. Ultrasound measurements of the distance between limbus and retinal break in eyes with media opacities. Retina 37:1400–1406, 2017.

    Article  PubMed  Google Scholar 

  35. 35.

    Vurgese, S., S. Panda-Jonas, and J. B. Jonas. Scleral thickness in human eyes. PLoS ONE 7:e29692, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Xu, J., J. J. Heys, V. H. Barocas, and T. W. Randolph. Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm. Res. 17:664–669, 2000.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Zetterberg, M. Age-related eye disease and gender. Maturitas 83:19–26, 2016.

    Article  PubMed  Google Scholar 

Download references


This study was funded by the Italian Ophthalmological Society.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information



Corresponding author

Correspondence to Marco Ferroni.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (GIF 590 kb)

Supplementary material 2 (GIF 525 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferroni, M., Cereda, M.G. & Boschetti, F. A Combined Approach for the Analysis of Ocular Fluid Dynamics in the Presence of Saccadic Movements. Ann Biomed Eng 46, 2091–2101 (2018). https://doi.org/10.1007/s10439-018-02110-2

Download citation


  • Computational fluid dynamics
  • Vitreous
  • Saccades
  • Age-related macular degeneration
  • Scleral hydraulic conductivity