Skip to main content

Advertisement

Log in

Preparation of Chitosan/Hydroxyapatite Substrates with Controllable Osteoconductivity Tracked by AFM

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, cell–material adhesive strength and cellular mechanical properties were measured using atomic force microscopy (AFM) to track cell attachment and osteogenic differentiation. First, chitosan substrates were treated with simulated body fluid (SBF) for various periods, resulting in substrates with different osteoconductivity. The X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and in vitro tests revealed that the biomimeticity and osteoconductivity of substrates increased with increasing time of SBF treatment. When the SBF immersion exceeded 14 days, the chitosan substrates exhibited their highest biocompatibility and osteoconductivity. AFM measurements indicated specifically high adhesive forces between SBF-treated chitosan and osteogenic cells, causing better cell attachment. The results demonstrate that cell adhesion was controlled by cell–material adhesive strength, which were in turn controlled via the SBF treatment time. The adhesive strength between cells and material also accounted for the chitosan substrates’ specific selectivity toward osteogenic cells. A two-step increase in mechanical strength was observed for the nucleus and cytoplasm of osteogenic cells. The results indicate that through the use of AFM, the real-time cell–material interforce and cellular mechanics can be identified. The adhesive strength was positively correlated to the cell attachment, and the second increase in the Young’s modulus of nucleus and cytoplasm was correlated to early osteogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abercrombie, M., J. E. Heaysman, and S. M. Pegrum. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp. Cell Res. 59:393–398, 1970.

    Article  CAS  PubMed  Google Scholar 

  2. Amaral, I. F., P. L. Granja, and M. A. Barbosa. In vitro mineralisation of chitosan membranes carrying phosphate functionalities. Key Eng. Mater. 254–256:577–580, 2004.

    Article  Google Scholar 

  3. Barrere, F., M. M. E. Snel, C. A. van Blitterswijk, K. de Groot, and P. Layrolle. Nucleation of biomimetic Ca-P coating on Ti6A14V from a SBFx5 solution: influence of magnesium. Biomaterials 25:2901–2910, 2004.

    Article  CAS  PubMed  Google Scholar 

  4. Boyan, B. D., T. W. Hummert, D. D. Dean, and Z. Schwartz. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17:137–146, 1996.

    Article  CAS  PubMed  Google Scholar 

  5. Burdick, J. A., and K. S. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315–4323, 2002.

    Article  CAS  PubMed  Google Scholar 

  6. Chang, B. S., C. K. Lee, K. S. Hong, H. J. Youn, H. S. Ryu, S. S. Chung, and K. W. Park. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 21:1291–1298, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Costa, K. D., and F. C. P. Yin. Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J. Biomech. Eng. 121:462–471, 1999.

    Article  CAS  PubMed  Google Scholar 

  8. Drevet, R., F. Velard, S. Potiron, D. Laurent-Maquin, and H. Benhayoune. In vitro dissolution and corrosion study of calcium phosphate coatings elaborated by pulsed electrodeposition current on Ti6Al4V substrates. J. Mater. Sci. Mater. Med. 22:753–761, 2011.

    Article  CAS  PubMed  Google Scholar 

  9. Eliaz, N., and M. Eliyahu. Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. J. Biomed. Mater. Res. A 80:621–634, 2007.

    Article  PubMed  Google Scholar 

  10. Fabry, B., A. H. Klemm, S. Kienle, T. E. Schaffer, and W. H. Goldmann. Focal adhesion kinase stabilizes the cytoskeleton. Biophy. J. 101:2131–2138, 2011.

    Article  CAS  Google Scholar 

  11. Fraga, A. F., E. D. A. Filho, E. C. D. S. Rigo, and A. O. Boschi. Synthesis of chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for guided tissue regeneration purposes. Appl. Surf. Sci. 257:3888–3892, 2011.

    Article  CAS  Google Scholar 

  12. Frankel, D. J., J. R. Pfeiffer, Z. Surviladze, A. E. Johnson, J. M. Oliver, B. S. Wilson, and A. R. Burn. Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging. Biophys. J. 90:2404–2413, 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fransiska, S., M. H. Ho, C. H. Li, J. L. Shih, S. W. Hsiao, and D. V. H. Thien. To enhance protein production from osteoblasts by using micro-patterned surfaces. Biochem. Eng. J. 78:120–127, 2013.

    Article  CAS  Google Scholar 

  14. Gandavarapu, N. R., D. L. Alge, and K. S. Anseth. Osteogenic differentiation of human mesenchymal stem cells on alpha 5 integrin binding peptide hydrogels is dependent on substrate elasticity. Biomater. Sci. 3:352–361, 2014.

    Article  Google Scholar 

  15. Hesse, C., M. Hengst, R. Kleeberg, and J. Götze. Influence of experimental parameters on spatial phase distribution in as-sprayed and incubated hydroxyapatite coatings. J. Mater. Sci. Mater. Med. 19:3235–3241, 2008.

    Article  CAS  PubMed  Google Scholar 

  16. Hsiao, S. W., V. H. T. Doan, M. H. Ho, H. J. Hsieh, C. H. Li, C. H. Hung, and H. H. Li. Interactions between chitosan and cells measured by AFM. Biomed. Mater. 5:5–12, 2010.

    Article  Google Scholar 

  17. Hsieh, C. Y., S. P. Tsai, M. H. Ho, D. M. Wang, C. E. Liu, C. H. Hsieh, H. C. Tseng, and H. J. Hsieh. Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohy. Polym. 67:124–132, 2007.

    Article  CAS  Google Scholar 

  18. Ichinohe, N., T. Nakano, T. Mitaka, Y. Umakoshi, and Y. Tabata. Proliferation and osteogenic differentiation of rat bone marrow stromal cells on bioapatite with different crystalline facets. J. Biomed. Mater. Res. A 93:646–655, 2010.

    PubMed  Google Scholar 

  19. Imatani, T., T. Kato, K. Okuda, and Y. Yamashita. Histatin 5 in hibits apoptosis in human gingival fibroblasts induced by porphyromonas gingivalis cell-surface polysaccharide. Eur. J. Med. Res. 9:528–532, 2004.

    CAS  PubMed  Google Scholar 

  20. Klein, M. O., A. Bijelic, T. Ziebart, F. Koch, P. W. Kämmerer, M. Wieland, M. A. Konerding, and B. Al-Nawas. Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation. Clin. Implant. Dent. Relat. Res. 15:166–175, 2013.

    Article  PubMed  Google Scholar 

  21. Komori, T., and T. Kishimoto. Cbfa1 in bone developmen. Curr. Opin. Genet. Dev. 4:494–499, 1998.

    Article  Google Scholar 

  22. Kong, L., Y. Gao, G. Lu, Y. Gong, N. Zhao, and X. Zhang. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur. Poly. J. 42:3171–3179, 2006.

    Article  CAS  Google Scholar 

  23. Kong, Y. M., H. E. Kim, and H. W. Kim. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite–tricalcium phosphate biphasic ceramics. J. Biomed. Mater. Res. B. 84B:334–339, 2008.

    Article  CAS  Google Scholar 

  24. Landi, E., A. Tampieri, G. Celotti, and S. Sprio. Densification behavior and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc. 20:2377–2387, 2000.

    Article  CAS  Google Scholar 

  25. Lego, B., W. G. Skene, and S. Giasson. Unprecenented covalently attached ATRP initiator onto OH-functionalized mica surfaces. Langmuir 24:379–382, 2007.

    Article  PubMed  Google Scholar 

  26. Li, C. H., J. W. Wang, M. H. Ho, J. L. Shih, S. W. Hsiao, and D. V. H. Thien. Immobilization of naringin onto chitosan substrates by using ozone activation. Coll. Surf. B 115:1–7, 2014.

    Article  CAS  Google Scholar 

  27. Matsuzaka, K., X. F. Walboomers, J. E. de Ruijter, and J. A. Jansen. The effect of poly-l-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro. Biomaterials 20:1293–1301, 1999.

    Article  CAS  PubMed  Google Scholar 

  28. McCaffrey, T. A., L. A. Aqarwal, and B. B. Weksler. A rapid fluorometric DNA assay for the measurement of cell density and proliferation in vitro. In Vitro Cell Dev. Biol. 24:247–252, 1988.

    Article  CAS  PubMed  Google Scholar 

  29. Murphy, W., D. Kohn, and D. Mooney. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. J. Biomed. Mater. Res. 50:50–58, 1999.

    Article  Google Scholar 

  30. Oliveira, G., M. Ferraz, P. González, J. Serra, B. Leon, M. Pèrez-Amor, and F. Monteiro. PLD bioactive ceramic films: the influence of CaO–P2O5 glass additions to hydroxyapatite on the proliferation and morphology of osteblastic like-cells. J. Mater. Sci. Mater. Med. 19:1775–1785, 2008.

    Article  CAS  PubMed  Google Scholar 

  31. Paluszkiewicz, C., E. Stodolak-Zych, W. Kwiatek, and W. Jelen. Bioactivity of chitosan based nanocomposite. J. Biomim. Biomater. Tissue Eng. 10:95–106, 2011.

    Article  CAS  Google Scholar 

  32. Pek, Y. S., A. C. A. Wan, and J. Y. Ying. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials 31:385–391, 2010.

    Article  CAS  PubMed  Google Scholar 

  33. Ramires, P., A. Giuffrida, and E. Milella. Three-dimensional reconstruction of confocal laser microscopy images to study the behaviour of osteoblastic cells grown on biomaterials. Biomaterials 23:397–406, 2002.

    Article  CAS  PubMed  Google Scholar 

  34. Schillers, H., M. Wälte, K. Urbanova, and H. Oberleithner. Real-time monitoring of cell elasticity reveals oscillating myosin activity. Biophys. J. 99:3639–3646, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sheetz, M. P., D. P. Felsenfeld, and C. G. Galbraith. Cell migration: regulation of force on extracellular matrix-integrin complexes. Trends Cell Biol. 8:51–54, 1998.

    Article  CAS  PubMed  Google Scholar 

  36. Shih, Y. R., K. F. Tseng, H. Y. Lai, C. H. Lin, and O. K. Lee. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J. Bone Miner. Res. 26:730–738, 2011.

    Article  CAS  PubMed  Google Scholar 

  37. Stamenović, D., and D. E. Ingbe. Models of cytoskeletal mechanics of adherent cells. Biomech. Model. Mechanobiol. 1:95–108, 2002.

    Article  PubMed  Google Scholar 

  38. Stein, G. S., J. B. Lian, J. L. Stein, A. J. van Wijnen, and M. Montecino. Transcriptional control of osteoblast growth and differentiation. Phys. Rev. 76:593–617, 1996.

    CAS  Google Scholar 

  39. Sun, J. S., Y. H. Tsuang, C. H. Yao, H. C. Liu, F. H. Lin, and Y. S. Hang. Effects of calcium phosphate bioceramics on skeletal muscle cells. J. Biomed. Mater. Res. 34:227–233, 1997.

    Article  CAS  PubMed  Google Scholar 

  40. Takai, E., K. D. Costa, A. Shaheen, C. T. Hung, and X. E. Guo. Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann. Biomed. Eng. 33:963–971, 2005.

    Article  PubMed  Google Scholar 

  41. Tamura, Y., Y. Takeuchi, M. Suzawa, S. Fukumoto, M. Kato, K. Miyazono, and T. Fujita. Focal adhesion kinase activity is required for bone morphogenetic protein—Smad1 signaling and osteoblastic differentiation in murine MC3T3-E1 cells. J. Bone Miner. Res. 16:1772–1779, 2001.

    Article  CAS  PubMed  Google Scholar 

  42. Tang, Y., Y. Liu, U. Sampathkumaran, M. Z. Hu, R. Wang, and M. R. D. Guire. Particle growth and particle–surface interactions during low-temperature deposition of ceramic thin films. Solid State Ionics 151:69–78, 2002.

    Article  CAS  Google Scholar 

  43. Thien, D. V. H., S. W. Hsiao, M. H. Ho, C. H. Li, and J. L. Shih. Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J. Mater. Sci. 48:1640–1645, 2013.

    Article  Google Scholar 

  44. Tuzlakoglu, K., and R. Reis. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process. J. Mater. Sci. Mater. Med. 18:1279–1286, 2007.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, D., C. Chen, T. He, and T. Lei. Hydroxyapatite coating on Ti6Al4V alloy by a sol-gel method. J. Mater. Sci. Mater. Med. 19:2281–2286, 2008.

    Article  CAS  PubMed  Google Scholar 

  46. Weiss, D. D., M. A. Sachs, and C. R. Woodard. Calcium phosphate bone cements: a comprehensive review. J. Long Term Eff. Med. Implants 13:41–47, 2003.

    Article  CAS  PubMed  Google Scholar 

  47. Yim, E. K. F., E. M. Darling, K. Kulangara, F. Guilak, and K. W. Leong. Nanotopography-induced changes in focal adhesion, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31:1299–1306, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Yu, S. H., S. J. Wu, J. Y. Wu, C. K. Peng, and F. L. Mi. Tripolyphosphate cross-linked macromolecular composites for the growth of shape- and size-controlled apatites. Molecules 18:27–40, 2013.

    Article  CAS  Google Scholar 

  49. Yuan, H., J. D. de Bruijn, Y. Li, J. Feng, Z. Yang, K. D. Groot, and X. Zhang. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP. J. Mater. Sci. Mater. Med. 12:7–13, 2001.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, W., X. Li, X. Liu, N. Zhang, and X. Wen. Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Mater. Sci. Eng. C 40:316–323, 2014.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Science Council, Taiwan (NSC 101-2221-E-011-094 -MY3), National Taiwan University of Science and Technology and Tri-Service General Hospital (TSGH-C103-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Hsing Li.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, M.H., Li, C.H., Hsiao, S.W. et al. Preparation of Chitosan/Hydroxyapatite Substrates with Controllable Osteoconductivity Tracked by AFM. Ann Biomed Eng 43, 1024–1035 (2015). https://doi.org/10.1007/s10439-014-1162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1162-x

Keywords

Navigation