Skip to main content
Log in

A Novel Method for Automatic Identification of Motion Artifact Beats in ECG Recordings

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a novel method for automatic identification of motion artifact beats in ECG recordings. The proposed method is based on the ECG complexes clustering, fuzzy logic and multi-parameters decision. Firstly, eight simulated datasets with different signal-to-noise ratio (SNR) were built for identification experiments. Results show that the identification sensitivity of our method is sensitive to SNR levels and acts like a low-pass filter that matches the cardiologists’ recognition, while the Norm FP rate and PVB FP rate keep significantly low regardless of SNR. Furthermore, a simulated dataset including random durations of motion activities superimposed segments and two clinical datasets acquired from two different commercial recorders were adopted for the evaluation of accuracy and robustness. The overall identification results on these datasets were: sensitivity >94.69%, Norm FP rate <0.60% and PVB FP rate <2.65%. All the results were obtained without any manual threshold adjustment according to the priori information, thus dissolving the drawbacks of previous published methods. Additionally, the total cost time of our method applied to 24 h recordings is less than 1 s, which is extremely suitable in the situation of magnanimity data in long-term ECG recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Baxt, W. G. Application of artificial neural networks to clinical medicine. Lancet 346(8983):1135–1138, 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Bian, Y., H. Yang, W. He, and J. Wang. A method base on least square algorithm for discriminating artifacts in dynamic electrocardiogram signals. J. Biomed. Eng. 24(5):1031, 2007.

    Google Scholar 

  3. Burbank, D. P., and J. G. Webster. Reducing skin potential motion artefact by skin abrasion. Med. Biol. Eng. Comput. 16(1):31–38, 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Chouakri, S., F. Bereksi-Reguig, and A. Taleb-Ahmed. QRS complex detection based on multi wavelet packet decomposition. Applied Mathematics and Computation 217(23):9508–9525, 2011.

    Article  Google Scholar 

  5. Friesen, G. M., T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint, and H. T. Nagle. A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. 37(1):85–98, 1990.

    Article  PubMed  CAS  Google Scholar 

  6. Goldberger, A. L., L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215, 2000.

    Article  PubMed  CAS  Google Scholar 

  7. Goovaerts, H. G., H. H. Ros, T. J. Van Den Akker, and H. Schneider. A digital QRS detector based on the principle of contour limiting. IEEE Trans. Biomed. Eng. 2:154–160, 1976.

    Article  Google Scholar 

  8. Hadj Slimane, Z. E., and A. Nait-Ali. QRS complex detection using Empirical Mode Decomposition. Digit. Signal Process. 20(4):1221–1228, 2010.

    Article  Google Scholar 

  9. Hamilton, P. S. Open Source ECG Analysis Software Documentation. Somerville, MA, USA: EP Limited, 2002.

    Google Scholar 

  10. Hamilton, P. S., and W. J. Tompkins. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 12:1157–1165, 1986.

    Article  Google Scholar 

  11. He, T., G. Clifford, and L. Tarassenko. Application of independent component analysis in removing artefacts from the electrocardiogram. Neural Comput. Appl. 15(2):105–116, 2006.

    Article  Google Scholar 

  12. Hong, H., and M. Liang. K-hybrid: a kurtosis-based hybrid thresholding method for mechanical signal denoising. J. Vib. Acoust. 129:458, 2007.

    Article  Google Scholar 

  13. Hyvärinen, A., J. Karhunen, and E. Oja. Independent Component Analysis. New York: Wiley-Interscience, 2001.

    Book  Google Scholar 

  14. Lagerholm, M., C. Peterson, G. Braccini, L. Edenbrandt, and L. Sornmo. Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47(7):838–848, 2000.

    Article  PubMed  CAS  Google Scholar 

  15. Li, Y. T., Y. S. Qi, and Z. Y. Xiao. Artifacts discriminating of dynamic electrocardiogram signals based on wavelet transform [J]. Comput. Eng. 35(18):269–271, 2009.

    Google Scholar 

  16. Mendel, J. M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. Proc. IEEE 79(3):278–305, 1991.

    Article  Google Scholar 

  17. Milanesi, M., N. Martini, N. Vanello, V. Positano, M. F. Santarelli, and L. Landini. Independent component analysis applied to the removal of motion artifacts from electrocardiographic signals. Med. Biol. Eng. Comput. 46(3):251–261, 2008.

    Article  PubMed  CAS  Google Scholar 

  18. Moody, G. B., and R. G. Mark. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3):45–50, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Moody, G. B., W. Muldrow, and R. G. Mark. A noise stress test for arrhythmia detectors. Comput. Cardiol. 11(3):381–384, 1984.

    Google Scholar 

  20. Pan, J., and W. J. Tompkins. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3:230–236, 1985.

    Article  Google Scholar 

  21. Raya, M. A. D., and L. G. Sison. Adaptive noise cancelling of motion artifact in stress ECG signals using accelerometer. In: IEEE Proceedings of the Second Joint EMBC/BMES Conference, Vol. 1752, 2002, pp. 1756–1757.

  22. Sharma, L., S. Dandapat, and A. Mahanta. ECG signal denoising using higher order statistics in Wavelet subbands. Biomed. Signal Process. Control 5(3):214–222, 2010.

    Article  Google Scholar 

  23. Tompkins, W. J. Biomedical Digital Signal Processing: C-Language Examples and Laboratory Experiments for the IBM PC. Englewood Cliffs: Prentice Hall, 1993.

    Google Scholar 

  24. Webster, J. G. Reducing motion artifacts and interference in biopotential recording. IEEE Trans. Biomed. Eng. 31(12):823–826, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Yeh, Y. C., and W. J. Wang. QRS complexes detection for ECG signal: the difference operation method. Comput. Methods Programs Biomed. 91(3):245–254, 2008.

    Article  PubMed  Google Scholar 

  26. Yoon, S. W., S. D. Min, Y. H. Yun, S. Lee, and M. Lee. Adaptive motion artifacts reduction using 3-axis accelerometer in e-textile ECG measurement system. J. Med. Syst. 32(2):101–106, 2008.

    Article  PubMed  Google Scholar 

  27. Yoon, S. W., H. S. Shin, S. D. Min, and M. H. Lee. Adaptive motion artifacts reduction algorithm for ECG signal in textile wearable sensor. IEICE Electron. Express 4(10):312–318, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Chen.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, Y., Fu, X., Li, D. et al. A Novel Method for Automatic Identification of Motion Artifact Beats in ECG Recordings. Ann Biomed Eng 40, 1917–1928 (2012). https://doi.org/10.1007/s10439-012-0551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0551-2

Keywords

Navigation