Long-Term Tracking of a Patient’s Health Condition Based on Pulse Rate Dynamics During Sleep

Article

Abstract

This article proposed a method to track the changes in health condition of a patient after coronary stenting over seven successive seasons based on daily pulse rate (PR). The pulse signal was recorded by an unconstrained monitoring system during sleep. Seasonal PR dynamics were evaluated by both linear measures, including time domain and frequency domain indexes, and nonlinear measures such as noise limit (NL), detection rate (DR), sample entropy (SampEn), and Poincaré plots. NL and DR were derived using the noise titration method. Significant changes in seasonal indexes of the patient were evaluated statistically. The results show that an overall downward trend of the PR dynamics corresponds to changes in the patient’s health condition that began in winter and developed in spring and worsened most seriously in the following summer. The monthly and seasonal orbits of PR nonlinearity of the patient were plotted and observed to follow different trajectory compared with a healthy subject. These results indicate the feasibility of applying dynamics of PR as a potential prognostic tool for detecting early changes in a patient’s health condition and also for understanding the temporal transition of health condition over a long-term period.

Keywords

Pulse rate variability Long-term health tracking Time domain Frequency domain Nonlinear dynamic Sleep monitoring Coronary stenting 

Abbreviations

AECG

Ambulatory electrocardiogram

ANS

Autonomic nervous system

DR

Detection rate

HF

High frequency

HRV

Heart rate variability

LF

Low frequency

NL

Noise limit

NT

Noise titration

PI

Pulse interval

PRV

Pulse rate variability

PSD

Power spectral density

SampEn

Sample entropy

SDNN

The mean of the 5-min standard deviation of the NN (normal RR) intervals over 24 h

References

  1. 1.
    Arzeno, N. M., M. T. Kearney, D. L. Eckberg, J. Nolan, and C. S. Poon. Heart rate chaos as a mortality predictor in mild to moderate heart failure. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007:5051–5054, 2007.PubMedGoogle Scholar
  2. 2.
    Barahona, M., and C.-S. Poon. Detection of nonlinear dynamics in short, noisy time series. Nature 381:215–217, 1996.CrossRefGoogle Scholar
  3. 3.
    Batchinsky, A. I., J. E. Skinner, C. Necsoiu, B. S. Jordan, D. Weiss, and L. C. Cancio. New measures of heart-rate complexity: Effect of chest trauma and hemorrhage. J. Trauma 68:1178–1185, 2010.PubMedCrossRefGoogle Scholar
  4. 4.
    Bigger, Jr., J. T., J. L. Fleiss, R. C. Steinman, L. M. Rolnitzky, R. E. Kleiger, and J. N. Rottman. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 85:164–171, 1992.PubMedGoogle Scholar
  5. 5.
    Brennan, M., M. Palaniswami, and P. Kamen. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 48:1342–1347, 2001.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen, W. Discovery of biorhythmic stories behind daily vital signs and its application. In: Recent Advances in Biomedical Engineering, edited by G. R. Naik. Vienna: InTech, 2009, pp. 453–492.Google Scholar
  7. 7.
    Chen, W. Health care—an everlasting challenge in temporal and spatial domains. J Multidiscip Healthc 3:189–199, 2010.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, Y., and W. Chen. Seasonal chaotic features of pulse rate in a healthy subject and a patient after coronary stenting. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010:2549–2552, 2010.PubMedGoogle Scholar
  9. 9.
    Chen, W., X. Zhu, and T. Nemoto. A new sensory device and optimal position for monitoring HR/RR during sleep. In: World Congress on Medical Physics and Biomedical Engineering, Vol. 25/7, edited by R. Magjarevic. Munich: Springer Berlin Heidelberg, 2009, pp. 126–129.Google Scholar
  10. 10.
    Daubechies, I. Ten lectures on wavelets. Philadelphia: SIAM, 279 pp, 1993.Google Scholar
  11. 11.
    Delyukov, A., Y. Gorgo, G. Cornelissen, K. Otsuka, and F. Halberg. Natural environmental associations in a 50-day human electrocardiogram. Int. J. Biometeorol. 45:90–99, 2001.PubMedCrossRefGoogle Scholar
  12. 12.
    Fujimoto, Y., and T. Iokibe. Evaluation of deterministic property of time series by the method of surrogate data and the trajectory parallel measure method. IEICE Trans. Fundam. E83-A:343–349, 2000.Google Scholar
  13. 13.
    Goldberger, A. L. Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside. Lancet 347:1312–1314, 1996.PubMedCrossRefGoogle Scholar
  14. 14.
    Gomes, M. E., A. V. Souza, H. N. Guimaraes, and L. A. Aguirre. Investigation of determinism in heart rate variability. Chaos 10:398–410, 2000.PubMedCrossRefGoogle Scholar
  15. 15.
    Hagerman, I., M. Berglund, M. Lorin, J. Nowak, and C. Sylven. Chaos-related deterministic regulation of heart rate variability in time- and frequency domains: Effects of autonomic blockade and exercise. Cardiovasc. Res. 31:410–418, 1996.PubMedGoogle Scholar
  16. 16.
    Janse, M. J. Chaos in the prediction of sudden death. Eur. Heart J. 16:299–301, 1995.PubMedGoogle Scholar
  17. 17.
    Kaisina, I. G., E. N. Sizova, V. I. Tsirkin, and S. I. Trukhina. Seasonal changes in heart rate variability in 11 to 13-year-old girls. Fiziol. Cheloveka 31:43–49, 2005.PubMedGoogle Scholar
  18. 18.
    Kazuma, N., and K. Otsuka. Seasonal variation in 1/f fluctuations of heart rate in asthmatic children. Biomed. Pharmacother. 55(Suppl 1):102–105, 2001.Google Scholar
  19. 19.
    Kazuma, N., K. Otsuka, M. Miyakawa, E. Shirase, I. Matsuoka, and M. Murata. Seasonal variation in heart rate variability in asthmatic children. Chronobiol. Int. 17:503–511, 2000.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim, K. K., H. J. Baek, Y. G. Lim, and K. S. Park. Effect of missing RR-interval data on nonlinear heart rate variability analysis. Comput. Methods Programs Biomed. 2010.Google Scholar
  21. 21.
    Kim, K. K., J. S. Kim, Y. G. Lim, and K. S. Park. The effect of missing RR-interval data on heart rate variability analysis in the frequency domain. Physiol. Meas. 30:1039–1050, 2009.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim, K. K., Y. G. Lim, J. S. Kim, and K. S. Park. Effect of missing RR-interval data on heart rate variability analysis in the time domain. Physiol. Meas. 28:1485–1494, 2007.PubMedCrossRefGoogle Scholar
  23. 23.
    Kleiger, R. E., J. P. Miller, J. T. Bigger, Jr., and A. J. Moss. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 59:256–262, 1987.PubMedCrossRefGoogle Scholar
  24. 24.
    Kristiansen, J., A. Olsen, J. H. Skotte, and A. H. Garde. Reproducibility and seasonal variation of ambulatory short-term heart rate variability in healthy subjects during a self-selected rest period and during sleep. Scand. J. Clin. Lab. Invest. 69:651–661, 2009.PubMedGoogle Scholar
  25. 25.
    La Rovere, M. T., J. T. Bigger, Jr., F. I. Marcus, A. Mortara, and P. J. Schwartz. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Atrami (autonomic tone and reflexes after myocardial infarction) investigators. Lancet 351:478–484, 1998.PubMedCrossRefGoogle Scholar
  26. 26.
    Lombardi, F. Chaos theory, heart rate variability, and arrhythmic mortality. Circulation 101:8–10, 2000.PubMedGoogle Scholar
  27. 27.
    Makikallio, T. H., P. Barthel, R. Schneider, A. Bauer, J. M. Tapanainen, M. P. Tulppo, G. Schmidt, and H. V. Huikuri. Prediction of sudden cardiac death after acute myocardial infarction: Role of Holter monitoring in the modern treatment era. Eur. Heart J. 26:762–769, 2005.PubMedCrossRefGoogle Scholar
  28. 28.
    Makikallio, T. H., H. V. Huikuri, A. Makikallio, L. B. Sourander, R. D. Mitrani, A. Castellanos, and R. J. Myerburg. Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. J. Am. Coll. Cardiol. 37:1395–1402, 2001.PubMedCrossRefGoogle Scholar
  29. 29.
    Malik, M., T. Farrell, T. Cripps, and A. J. Camm. Heart rate variability in relation to prognosis after myocardial infarction: Selection of optimal processing techniques. Eur. Heart J. 10:1060–1074, 1989.PubMedGoogle Scholar
  30. 30.
    Mallat, S., and S. Zhong. Characterization of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach. Intell. 14:710–732, 1992.CrossRefGoogle Scholar
  31. 31.
    Mozaffarian, D., P. W. Wilson, and W. B. Kannel. Beyond established and novel risk factors: Lifestyle risk factors for cardiovascular disease. Circulation 117:3031–3038, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    Otsuka, K., R. Izumi, N. Ishioka, H. Ohshima, and C. Mukai. Chronomics of heart rate variability on earth and in space. Respir. Physiol. Neurobiol. 169(Suppl 1):S69–S72, 2009.PubMedCrossRefGoogle Scholar
  33. 33.
    Pagani, M., F. Lombardi, S. Guzzetti, O. Rimoldi, R. Furlan, P. Pizzinelli, G. Sandrone, G. Malfatto, S. Dell’Orto, E. Piccaluga, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 59:178–193, 1986.PubMedGoogle Scholar
  34. 34.
    Peng, C. K., S. Havlin, H. E. Stanley, and A. L. Goldberger. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87, 1995.PubMedCrossRefGoogle Scholar
  35. 35.
    Poon, C. S., and M. Barahona. Titration of chaos with added noise. Proc. Natl. Acad. Sci. USA 98:7107–7112, 2001.PubMedCrossRefGoogle Scholar
  36. 36.
    Richman, J. S., and J. R. Moorman. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278:H2039–H2049, 2000.PubMedGoogle Scholar
  37. 37.
    Shensa, M. J. The discrete wavelet transform: Wedding the a trous and mallat algorithms. IEEE Trans. Signal Process. 40:2464–2482, 1992.CrossRefGoogle Scholar
  38. 38.
    Sturmer, T., P. Hasselbach, and M. Amelang. Personality, lifestyle, and risk of cardiovascular disease and cancer: Follow-up of population based cohort. BMJ 332:1359–1365, 2006.PubMedCrossRefGoogle Scholar
  39. 39.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065, 1996.CrossRefGoogle Scholar
  40. 40.
    Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, and J. Doyne Farmer. Testing for nonlinearity in time series: The method of surrogate data. Phys. D 58:77–94, 1992.CrossRefGoogle Scholar
  41. 41.
    Voss, A., J. Kurths, H. J. Kleiner, A. Witt, N. Wessel, P. Saparin, K. J. Osterziel, R. Schurath, and R. Dietz. The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc. Res. 31:419–433, 1996.PubMedGoogle Scholar
  42. 42.
    Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time series. Phys. D 16:285–317, 1985.CrossRefGoogle Scholar
  43. 43.
    Zhu, X., W. Chen, T. Nemoto, Y. Kanemitsu, K. Kitamura, K. Yamakoshi, and D. Wei. Real-time monitoring of respiration rhythm and pulse rate during sleep. IEEE Trans. Biomed. Eng. 53:2553–2563, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  1. 1.Biomedical Information Technology LaboratoryThe University of AizuAizu-WakamatsuJapan

Personalised recommendations