Skip to main content
Log in

Laser Ablation Imparts Controlled Micro-Scale Pores in Electrospun Scaffolds for Tissue Engineering Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electrospun scaffolds have been used extensively for tissue engineering applications due to the simple processing scheme and versatility. However, many additional benefits can be imparted to these materials via post-processing techniques. Specifically the addition of structured pores on the micro-scale can offer a method to enable patterned cell adhesion, enhanced diffusional properties, and/or guide vascular infiltration upon implantation in vivo. In this study, we laser ablated electrospun poly(l-lactic acid) (PLA) scaffolds and assessed the ablation process and cellular interaction by examining human adipose-derived stem cell (hASC) viability and proliferation on laser micro-machined scaffolds. Laser ablated pores of 150, 300, and 600 μm diameter were micro-machined through electrospun PLA scaffolds. Laser ablation parameters were varied and it was determined that the aperture and z-travel direction of the laser linearly correlated with the ablated pore diameter. To assess cytocompatibility of the micro-machined scaffolds, hASCs were seeded on each scaffold and cell viability was assessed on day 7. Human ASCs were able to adhere around the micro-machined features. DNA content was quantified on all scaffolds and it was determined that hASCs were able to proliferate on all scaffolds. The process of laser ablation could impart many beneficial features to electrospun scaffolds by increasing mass transport and mimicking micro-scale features and assisting in patterning of cells around micro-machined features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Atala, A., R. Lanza, J. Thomson, and R. Nerem. Principles of Regenerative Medicine. Boston: Elsevier, 2008.

    Google Scholar 

  2. Baker, B. M., A. O. Gee, R. B. Metter, A. S. Nathan, R. A. Marklein, J. A. Burdick, and R. L. Mauck. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29:2348–2358, 2008.

    Article  PubMed  CAS  Google Scholar 

  3. Choi, H. W., J. K. Johnson, J. Nam, D. F. Farson, and J. Lannutti. Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation. J. Laser Appl. 19:225–231, 2007.

    Article  Google Scholar 

  4. Dong, Y. X., T. Yong, S. Liao, C. K. Chan, and S. Ramakrishna. Degradation of electrospun nanofiber scaffold by short wave length ultraviolet radiation treatment and its potential applications in tissue engineering. Tissue Eng. Part A 14:1321–1329, 2007.

    Google Scholar 

  5. Duncan, A. C., F. Rouais, S. Lazare, L. Bordenave, and C. Baquey. Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloid Surf. B Biointerfaces 54:150–159, 2007.

    Article  CAS  Google Scholar 

  6. Dupont, A., P. Caminat, and P. Bournot. Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface. J. Appl. Phys. 78:2022–2028, 1995.

    Article  CAS  Google Scholar 

  7. Gupta, B., N. Revagade, and H. Hilborn. Poly(lactic acid) fiber: an overview. Prog. Polym. Sci. 32:455–482, 2007.

    Article  CAS  Google Scholar 

  8. He, L. N., J. A. Chen, D. F. Farson, J. J. Lannutti, and S. I. Rokhlin. Wettability modification of electrospun poly(epsilon-caprolactone) fibers by femtosecond laser irradiation in different gas atmospheres. Appl. Surf. Sci. 257:3547–3553, 2011.

    Article  CAS  Google Scholar 

  9. Iwanaga, S., Y. Akiyama, A. Kikuchi, M. Yamato, K. Sakai, and T. Okano. Fabrication of a cell array on ultrathin hydrophilic polymer gels utilising electron beam irradiation and UV excimer laser ablation. Biomaterials 26:5395–5404, 2005.

    Article  PubMed  CAS  Google Scholar 

  10. Lannutti, J., D. Reneker, T. Ma, D. Tomasko, and D. Farson. Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 27:504–509, 2007.

    Article  CAS  Google Scholar 

  11. Lim, Y. C., J. Johnson, Z. Fei, Y. Wu, D. F. Farson, J. J. Lannutti, H. W. Choi, and L. J. Lee. Micropatterning and characterization of electrospun poly(e-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Biotechnol. Bioeng. 108:116–126, 2010.

    Article  Google Scholar 

  12. McCullen, S. D., C. M. Haslauer, and E. G. Loboa. Fibre-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays. J. Mater. Chem. Soft Matter. Accepted 2011.

  13. McCullen, S. D., K. L. Stano, D. R. Stevens, W. A. Roberts, N. A. Monteiro-Riviere, L. I. Clarke, and R. E. Gorga. Development, optimization, and characterization of electrospun poly(lactic acid) nanofibers containing multi-walled carbon nanotubes. J. Appl. Polym. Sci. 105:1668–1678, 2007.

    Article  CAS  Google Scholar 

  14. McIntosh, K., S. Zvonic, S. Garrett, J. B. Mitchell, Z. E. Floyd, L. Hammill, A. Kloster, Y. D. Halvorsen, J. P. Ting, R. W. Storms, B. Goh, G. Kilroy, X. Y. Wu, and J. M. Gimble. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 24:1246–1253, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. Miller, P. R., R. Aggarwal, A. Doraiswamy, Y. J. Lin, Y. S. Lee, and R. J. Narayan. Laser micromachining for biomedical applications. JOM 61:35–40, 2009.

    Article  CAS  Google Scholar 

  16. Nam, J., Y. Huang, S. Agarwal, and J. Lannutti. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. Part A 13:2249–2257, 2007.

    CAS  Google Scholar 

  17. Nazhat, S. N., E. A. Abou Neel, A. Kidane, I. Ahmed, C. Hope, M. Kershaw, P. D. Lee, E. Stride, N. Saffari, J. C. Knowles, and R. A. Brown. Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules 8:543–551, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. Pham, Q. P., U. Sharma, and A. G. Mikos. Electrospun poly(e-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7:2796–2805, 2006.

    Article  PubMed  CAS  Google Scholar 

  19. Puissant, N., C. Barreau, P. Bourin, C. Clavel, J. Corre, C. Bousquet, C. Taureau, B. Cousin, M. Abbal, P. Laharrague, L. Penicaud, L. Casteilla, and A. Blancher. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 129:118–129, 2005.

    Article  PubMed  Google Scholar 

  20. Sanchez, F., R. Aguiar, P. Serra, M. Varela, and J. L. Morenza. Study of material emission in ArF and KrF excimer laser ablation of yttria stabilized zirconia single crystals. Thin Solid Films 317:108–111, 1998.

    Article  CAS  Google Scholar 

  21. Serra, P., L. Cleries, and J. L. Morenza. Analysis of the expansion of hydroxyapatite laser ablation pulses. Appl. Surf. Sci. 96–98:216–221, 1996.

    Article  Google Scholar 

  22. Sill, T. J., and H. A. von Recum. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006, 2008.

    Article  PubMed  CAS  Google Scholar 

  23. Srinivasan, R. Ablation of polymers and biological tissue by ultraviolet lasers. Science 234:559–565, 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Vogel, A., and V. Venugopalan. Mechanisms of pulsed laser ablation of biological tissue. Chem. Rev. 103:577–644, 2003.

    Article  PubMed  CAS  Google Scholar 

  25. Wall, M. E., S. H. Bernacki, and E. G. Loboa. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng. 13:1291–1298, 2007.

    Article  PubMed  CAS  Google Scholar 

  26. Zhu, X. L., W. G. Cui, X. H. Li, and Y. Jin. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 9:1795–1801, 2007.

    Article  Google Scholar 

  27. Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211–228, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Nonwovens Cooperative Research Center for funding (NCRC05-77, EGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Loboa.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

S. D. McCullen and S. D. Gittard contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCullen, S.D., Gittard, S.D., Miller, P.R. et al. Laser Ablation Imparts Controlled Micro-Scale Pores in Electrospun Scaffolds for Tissue Engineering Applications. Ann Biomed Eng 39, 3021–3030 (2011). https://doi.org/10.1007/s10439-011-0378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0378-2

Keywords

Navigation