Skip to main content

Advertisement

Log in

Approach for Fabricating Tissue Engineered Vascular Grafts with Stable Endothelialization

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A major roadblock in the development of tissue engineered vascular grafts (TEVGs) is achieving construct endothelialization that is stable under physiological stresses. The aim of the current study was to validate an approach for generating a mechanically stable layer of endothelial cells (ECs) in the lumen of TEVGs. To accomplish this goal, a unique method was developed to fabricate a thin EC layer using poly(ethylene glycol) diacrylate (PEGDA) as an intercellular “cementing” agent. This EC layer was subsequently bonded to the lumen of a tubular scaffold to generate a bi-layered construct. The viability of bovine aortic endothelial cells (BAECs) through the “cementing” process was assessed. “Cemented” EC layer expression of desired phenotypic markers (AcLDL uptake, VE-cadherin, eNOS, PECAM-1) as well as of injury-associated markers (E-selectin, SM22α) was also examined. These studies indicated that the “cementing” process allowed ECs to maintain high viability and expression of mature EC markers while not significantly stimulating primary injury pathways. Finally, the stability of the “cemented” EC layers under abrupt application of high shear pulsatile flow (~11 dyn/cm2, P avg ~ 95 mmHg, ΔP ~ 20 mmHg) was evaluated and compared to that of conventionally “seeded” EC layers. Whereas the “cemented” ECs remained fully intact following 48 h of pulsatile flow, the “seeded” EC layers delaminated after less than 1 h of flow. Furthermore, the ability to extend this approach to degradable PEGDA “cements” permissive of cell elongation was demonstrated. Combined, these results validate an approach for fabricating bi-layered TEVGs with stable endothelialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bryant, S. J., and K. S. Anseth. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59:63–72, 2002.

    Article  CAS  PubMed  Google Scholar 

  2. Bryant, S. J., and K. S. Anseth. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J. Biomed. Mater. Res. A 64A:70–79, 2003.

    Article  CAS  Google Scholar 

  3. Bryant, S. J., K. S. Anseth, D. A. Lee, and D. L. Bader. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J. Orthop. Res. 22:1143–1149, 2004.

    Article  CAS  PubMed  Google Scholar 

  4. Bryant, S. J., K. L. Durand, and K. S. Anseth. Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. J. Biomed. Mater. Res. A 67A:1430–1436, 2003.

    Article  CAS  Google Scholar 

  5. Bulick, A. S., D. J. Muñoz-Pinto, X. Qu, M. Mani, D. Cristancho, M. Urban, and M. S. Hahn. Impact of endothelial cells and mechanical conditioning on smooth muscle cell extracellular matrix production and differentiation. Tissue Eng. A 15:815–825, 2009.

    Article  CAS  Google Scholar 

  6. Chaudhuri, V., and M. A. Karasek. Mechanisms of microvascular wound repair ii. Injury induces transformation of endothelial cells into myofibroblasts and the synthesis of matrix proteins. In Vitro Cell. Dev. Biol. Animal 42:314–319, 2009.

    Google Scholar 

  7. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer-Verlag, pp. 321–391, 1993.

    Google Scholar 

  8. Hahn, M., M. McHale, E. Wang, R. Schmedlen, and J. West. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann. Biomed. Eng. 35:190–200, 2007.

    Article  PubMed  Google Scholar 

  9. Hahn, M., L. Taite, J. Moon, M. Rowland, K. Ruffino, and J. West. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27:2519–2524, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Hastings, N. E., M. B. Simmers, O. G. McDonald, B. R. Wamhoff, and B. R. Blackman. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am. J. Physiol. Cell Physiol. 293:C1824–C1833, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. Hiles, M., S. Badylak, G. Lantz, K. Kokini, L. Geddes, and R. Morff. Mechanical properties of xenogeneic small-intestinal submucosa when used as an aortic graft in the dog. J. Biomed. Mater. Res. 29:883–891, 1995.

    Article  CAS  PubMed  Google Scholar 

  12. Hummon, A. B., S. R. Lim, M. J. Difilippantonio, and T. Ried. Isolation and solubilization of proteins after trizol extraction of RNA and DNA from patient material following prolonged storage. Biotechniques 42:467–472, 2007.

    Article  CAS  PubMed  Google Scholar 

  13. Isenberg, B., and R. Tranquillo. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng. 31:937–939, 2003.

    Article  PubMed  Google Scholar 

  14. Johnson, C., T. How, M. Scraggs, C. West, and J. Burns. A biomechanical study of the human vertebral artery with implications for fatal arterial injury. Forensic Sci. Int. 109:169–182, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Lemson, M. S., J. H. M. Tordoir, M. J. A. P. Daemen, and P. J. E. H. M. Kitslaar. Intimal hyperplasia in vascular grafts. Eur. J. Vasc. Endovasc. Surg. 19:336–350, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Lloyd-Jones, D., R. Adams, M. Carnethon, G. De Simone, T. B. Ferguson, K. Flegal, E. Ford, K. Furie, A. Go, K. Greenlund, N. Haase, S. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lackland, L. Lisabeth, A. Marelli, M. McDermott, J. Meigs, D. Mozaffarian, G. Nichol, C. O’Donnell, V. Roger, W. Rosamond, R. Sacco, P. Sorlie, R. Stafford, J. Steinberger, T. Thom, S. Wasserthiel-Smoller, N. Wong, J. Wylie-Rosett, Y. Hong, AHA Statistics Committee, and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119:e21–e181, 2009.

    Article  PubMed  Google Scholar 

  17. McKee, J. A., S. S. R. Banik, M. J. Boyer, N. M. Hamad, J. H. Lawson, L. E. Niklason, and C. M. Counter. Human arteries engineered in vitro. EMBO J. 4:633–638, 2003.

    Article  CAS  Google Scholar 

  18. Peyton, S., C. Raub, V. Keschrumrus, and A. Putnam. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27:4881–4893, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Posey, J., and L. Geddes. Measurement of the modulus of elasticity of the arterial wall. Cardiovasc. Res. Ctr. Bull. 11:83–88, 1973.

    Google Scholar 

  20. Raeber, G. P., M. P. Lutolf, and J. A. Hubbell. Molecularly engineered peg hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J. 89:1374–1388, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Reddy, S. K., R. P. Sebra, K. S. Anseth, and C. N. Bowman. Living radical photopolymerization induced grafting on thiol-ene based substrates. J. Polym. Sci. A 43:2134–2144, 2005.

    Article  CAS  Google Scholar 

  22. Rinker, K. D., A. P. Kirkpatrick, H. P. Ting-Beall, R. D. Shepherd, J. D. Levin, J. Irick, J. L. Thomas, and G. A. Truskey. Linoleic acid increases monocyte deformation and adhesion to endothelium. Atherosclerosis 177:275–285, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. Rydholm, A. E., K. S. Anseth, and C. N. Bowman. Effects of neighboring sulfides and pH on ester hydrolysis in thiol-acrylate photopolymers. Acta Biomater. 3:449–455, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Salacinski, H., A. Tiwari, G. Hamilton, and A. Seifalian. Cellular engineering of vascular bypass grafts: role of chemical coatings for enhancing endothelial cell attachment. Med. Biol. Eng. Comput. 39:609–618, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Sawhney, A., C. Pathak, and J. Hubbell. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-copoly(alpha-hydroxy acid) diacrylate macromers. Macromolecules 26:581–587, 1993.

    Article  CAS  Google Scholar 

  26. Schmedlen, R. H., W. M. Elbjeirami, A. S. Gobin, and J. L. West. Tissue engineered small-diameter vascular grafts. Clin. Plast. Surg. 30:507–517, 2003.

    Article  PubMed  Google Scholar 

  27. Seliktar, D., R. Black, R. Vito, and R. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28:351–362, 2000.

    Article  CAS  PubMed  Google Scholar 

  28. Solan, A., S. Mitchell, M. Moses, and L. Niklason. Effect of pulse rate on collagen deposition in the tissue-engineered blood vessel. Tissue Eng. 9:579–586, 2003.

    Article  CAS  PubMed  Google Scholar 

  29. Soulis, J. V., T. M. Farmakis, G. D. Giannoglou, and G. E. Louridas. Wall shear stress in normal left coronary artery tree. J. Biomech. 39:742–749, 2006.

    Article  PubMed  Google Scholar 

  30. Thompson, M., J. Budd, S. Eady, R. James, and P. Bell. Effect of pulsatile shear stress on endothelial attachment to native vascular surfaces. Br. J. Surg. 81:1121–1127, 1994.

    Article  CAS  PubMed  Google Scholar 

  31. Wechezak, A. R., D. E. Coan, R. F. Viggers, and L. R. Sauvage. Dextran increases survival of subconfluent endothelial cells exposed to shear stress. Am. J. Physiol. Heart Circ. Physiol. 264:H520–H525, 1993.

    CAS  Google Scholar 

  32. West, J. L., and J. A. Hubbell. Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injury in the rat: the roles of medial and luminal factors in arterial healing. Proc. Natl Acad. Sci. USA 93:13188–13193, 1996.

    Article  CAS  PubMed  Google Scholar 

  33. West, J., and J. Hubbell. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244, 1999.

    Article  CAS  Google Scholar 

  34. Wolf, S., and N. Werthessen. Dynamics of Arterial Flow. New York: Plenum Press, p. 472, 1979.

    Google Scholar 

  35. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.

    CAS  PubMed  Google Scholar 

  36. Womersley, J. Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys. Med. Biol. 2:178, 1957.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Z.-X., T.-F. Xi, Y.-J. Wang, X.-S. Chen, J. Zhang, C.-R. Wang, Y.-Q. Gu, L. Chen, J.-X. Li, and B. Chen. In vitro study of endothelial cells lining vascular grafts grown within the recipient’s peritoneal cavity. Tissue Eng. A 14:1109–1120, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from the Texas Engineering Experimental Station. We also acknowledge the lab of Victor Ugaz, PhD for use of their viscometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariah S. Hahn.

Additional information

Associate Editor Kyriacos A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jimenez-Vergara, A.C., Guiza-Arguello, V., Becerra-Bayona, S. et al. Approach for Fabricating Tissue Engineered Vascular Grafts with Stable Endothelialization. Ann Biomed Eng 38, 2885–2895 (2010). https://doi.org/10.1007/s10439-010-0049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0049-8

Keywords

Navigation