Skip to main content

Modeling Alveolar Volume Changes During Periodic Breathing in Heterogeneously Ventilated Lungs


A simplified model of periodic breathing, proposed by Whiteley et al. (Math. Med. Biol. 20:205–224, 2003), describes a non-uniform breathing pattern for a lung with an inhomogeneous gas distribution, such as that observed in some subjects suffering from respiratory disease. This model assumes a constant alveolar volume, and predicts incidence of irregular breathing caused by small, poorly ventilated regions of the lung. Presented here is an extension to this work which, by allowing variable lung volume, facilitates the investigation of pulmonary collapse in poorly ventilated compartments. A weakness of the original model is that a very small alveolar volume is required for periodic breathing to occur. The model presented within, which removes the assumption of constant compartment volume and allows alveolar volume to vary with time, predicts periodic breathing at higher, more realistic alveolar volumes. Furthermore, the predicted oscillations in ventilation match experimental data more closely. Thus the model that allows for alveolar collapse has improved upon these earlier results, and establishes a theoretical link between periodic breathing and atelectasis.

This is a preview of subscription content, access via your institution.



  1. 1.

    Batzel, J. J., and H. T. Tran. Stability of the human respiratory control system. J. Math. Biol. 41:45–79, 2000.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Carley, D. W., and D. C. Shannon. A minimal mathematical model of human periodic breathing. J. Appl. Physiol. 65:1400–1409, 1988.

    CAS  PubMed  Google Scholar 

  3. 3.

    Duggan, M., and B. P. Kavanagh. Pulmonary atelectasis, a pathogenic perioperative entity. Anesthesiology 102:838–854, 2005.

    Article  PubMed  Google Scholar 

  4. 4.

    El Hefnawy, A., G. M. Saidel, and E. N. Bruce. CO2 control of the respiratory system: plant dynamics and stability analysis. Ann. Biomed. Eng. 16:445–461, 1988.

    CAS  Article  Google Scholar 

  5. 5.

    Fletcher, R., B. Jonson, G. Cumming, and J. Brew. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br. J. Anaesth. 53:77–88, 1981.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Fowler, A. C. Mathematical Models in the Applied Sciences. Cambridge: Cambridge University Press, 1997.

    Google Scholar 

  7. 7.

    Fowler, A. C., and G. P. Kalamangalam. The role of the central chemoreceptor in causing periodic breathing. IMA J. Math. Appl. Med. Biol. 17:147–167, 2000.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Fowler, A. C., G. P. Kalamangalam, and G. Kember. A mathematical analysis of the Grodins model of respiratory control. IMA J. Math. Appl. Med. Biol. 10:249–280, 1993.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Franklin, K. A., E. Sandstrom, G. Johansson, and E. M. Balfors. Hemodynamics, cerebral circulation, and oxygen saturation in Cheyne-Stokes respiration. J. Appl. Physiol. 83:1184–1191, 1997.

    CAS  PubMed  Google Scholar 

  10. 10.

    Grodins, F. S., J. Buell, and A. J. Bart. Mathematical analysis and digital simulation of the respiratory control system. J. Appl. Physiol. 22:260–276, 1967.

    CAS  PubMed  Google Scholar 

  11. 11.

    Joyce, C. J., A. B. Baker, and R. R. Kennedy. Gas uptake from an unventilated area of lung: computer model of absorption atelectasis. J. Appl. Physiol. 74:1107–1116, 1993.

    CAS  PubMed  Google Scholar 

  12. 12.

    Joyce, C. J., and A. B. Williams. Kinetics of absorption atelectasis during anesthesia: a mathematical model. J. Appl. Physiol. 86:1116–1125, 1999.

    CAS  PubMed  Google Scholar 

  13. 13.

    Kavanagh, B. P. Perioperative atelectasis. Minerva Anestesiol. 74:285–287, 2008.

    CAS  PubMed  Google Scholar 

  14. 14.

    Keener, J., and J. Sneyd. Mathematical Physiology. New York: Springer, 1998.

    Google Scholar 

  15. 15.

    Khoo, M. C. K., R. E. Kronauer, K. P. Strohl, and A. S. Slutsky. Factors inducing periodic breathing in humans: a general model. J. Appl. Physiol. 53:644–659, 1982.

    CAS  PubMed  Google Scholar 

  16. 16.

    Longobardo, G. S., N. S. Cherniack, and B. Gothe. Factors affecting respiratory system stability. Ann. Biomed. Eng. 17:377–396, 1989.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Lumb, A. B. Nunn’s Applied Respiratory Physiology, 5th ed. Oxford: Butterworth Heinemann, 2000.

    Google Scholar 

  18. 18.

    Mackey, M. C., and L. Glass. Oscillation and chaos in physiological control systems. Science 197:287–289, 1977.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Pinna, G. D., R. Maestri, A. Mortara, M. T. La Rovere, F. Fanfulla, and P. Sleight. Periodic breathing in heart failure patients: testing the hypothesis of instability of the chemoreflex loop. J. Appl. Physiol. 89:2147–2157, 2000.

    CAS  PubMed  Google Scholar 

  20. 20.

    Reeder, M. K., M. D. Goldman, L. Loh, A. D. Muir, and K. R. Casey. Haemodynamic effects of periodic ventilation abolition with supplementary oxygen. Br. J. Anaesth. 67:326–328, 1991.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Severinghaus, J. W., and M. Stupfel. Alveolar dead space as an index of distribution of blood flow in pulmonary capillaries. J. Appl. Physiol. 10:335–348, 1957.

    CAS  PubMed  Google Scholar 

  22. 22.

    Vielle, B., and G. Chauvet. Delay equation analysis of human respiratory stability. Math. Biosci. 152:105–122, 1998. doi:10.1016/S0025-5564(98)10028-7.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Whiteley, J. P., D. J. Gavaghan, and C. E. W. Hahn. Mathematical modelling of pulmonary gas transport. J. Math. Biol. 47:79–99, 2003.

    PubMed  Google Scholar 

  24. 24.

    Whiteley, J. P., D. J. Gavaghan, and C. E. W. Hahn. Periodic breathing induced by arterial oxygen partial pressure oscillations. Math. Med. Biol. 20:205–224, 2003.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Whiteley, J. P., M. J. Turner, A. B. Baker, D. J. Gavaghan, and C. E. W. Hahn. The effects of ventilation pattern on carbon dioxide transfer in three computer models of the airways. Respir. Physiol. Neurobiol. 131:269–284 2002. doi:10.1016/S1569-9048(02)00066-6.

    CAS  Article  PubMed  Google Scholar 

Download references


Sara-Jane Dunn is supported by an EPSRC-funded Life Sciences Interface Doctoral Training Centre studentship (Grant No. EP/E501605/1).

Author information



Corresponding author

Correspondence to Sara-Jane Dunn.

Additional information

Associate Editor John H. Linehan oversaw the review of this article.

Appendix A: The Solution Method

Appendix A: The Solution Method

In this section, the relationships between F, P, C are defined, as well as those between G and D for the carbon dioxide. Parameter values are given in Table 3.

The alveolar partial pressure is found by applying Dalton’s law, which states that the partial pressure of a gas in a gas mixture is the pressure that this gas would exert if it occupied the total volume17:

$$ P_{\text{A}_{1}} = (P_\text{B} - P_{\text{H}_2\text{O}})F_{\text{A}_{1}}. $$

Here, P B is the atmospheric pressure and \(P_{\text{H}_2\text{O}}\) the partial pressure of water vapor. Since compartment 2 is defined to be the healthy region, the O2 blood content in it is assumed constant.

Alveolar oxygen partial pressure is then used to find the oxygen content in the blood leaving compartment 1 via

$$ C_{\text{A}_{1}} = K_{\text{Hb}}S(P_{\text{A}_{1}}) + \alpha P_{\text{A}_{1}}.$$

The constants K Hb and α represent the oxygen carrying capacity of hemoglobin and the solubility coefficient of oxygen in the blood, respectively. S(P) is the saturation function, defined empirically by

$$ S(P) = {\frac{a_1P + a_2P^2 + a_3P^3 + P^4}{a_4 + a_5P + a_6P^2 + a_7P^3 + P^4}}, $$

which gives the fractional oxygen saturation of the blood.

Equation (A.2) is used to find \(C_{\text{A}_{2}},\) which will be assumed constant. Thus, having found \(C_{\text{A}_{1}}\) and \(C_{\text{A}_{2}},\) the total alveolar oxygen content can be determined as the weighted sum of its components from each region, according to the fraction of total perfusion that they receive:

$$ C_\text{A} = {\frac{Q_1}{Q_1 + Q_2}}C_{\text{A}_1}(t) + {\frac{Q_2}{Q_1 + Q_2}}C_{\text{A}_2}.$$

Under the assumption that diffusion across the alveolar membrane is instantaneous, arterial oxygen content is equilibrated with alveolar content, i.e., C a = C A. Then the total arterial partial pressure can be found by solving (A.2) for P a:

$$ C_{\text{a}}(t) - K_{\text{Hb}}S(P_{\text{a}}(t)) - \alpha P_{\text{a}}(t) = 0.$$

The carbon dioxide content in the mixed venous blood, \(D_{\bar{v}},\) and in the poorly ventilated compartment, \(D_{\text{A}_{1}},\) are calculated using the following equations.

$$ KD_{\bar{v}} = \lambda(G_{\bar{v}} + G_0), $$
$$ KD_{\text{A}_1} = \lambda(G_{\text{A}_1} + G_0). $$

The constant λ is the incremental CO2 solubility in blood, and G 0 a base value for the fractional concentration. \(G_{\bar{v}}\) is calculated by assuming a value of \(P_{\bar{v}\text{CO}_{2}} = 46\,\text{mmHg}\) and applying (A.1).

The arterial oxygen partial pressure, P a, is used to calculate the total inspired ventilation according to Eq. (2), and from this \(\dot{V}_{\text{I}_{1}}\) is found using (5). \(\dot{V}_{\text{I}_{1}}\) is used to calculate the amount of expired ventilation, \(\dot{V}_{\text{E}_{1}}\) from (6). The differential equation (7) is solved for \(V_{\text{A}_{1}},\) and then those for \(F_{\text{A}_{1}}\) and \(G_{\text{A}_{1}}\) using the Matlab delay differential equation solver, dde23.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dunn, SJ., Whiteley, J.P. Modeling Alveolar Volume Changes During Periodic Breathing in Heterogeneously Ventilated Lungs. Ann Biomed Eng 38, 2988–2999 (2010).

Download citation


  • Delay differential equations
  • Atelectasis