Skip to main content
Log in

Effect of Sustained Tension on Bladder Smooth Muscle Cells in Three-Dimensional Culture

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Previous studies demonstrated that bladder cells respond to changes in their mechanical environments by exhibiting alterations in cellular functions, such as hypertrophy or fibrosis. In the present study, we hypothesize that changes in smooth muscle cell (SMC) behavior triggered by mechanical stimuli may represent a phenotypic shift between contractile and synthetic phenotypes. Using a custom-made device, rat bladder SMCs were cultured in three-dimensional (3-D) collagen gels and exposed to sustained tension. When compared to no-tension controls, SMCs exposed to tension exhibited significantly (p < 0.05) higher expression of alpha-smooth muscle actin (α-SMA), while cell population density was similar in both groups. In addition, both mean and median aspect ratios of SMCs in 3-D collagen constructs exposed to tension were significantly (p < 0.05) greater than those of cells cultured under no externally applied tension, indicating that there are more elongated, spindle-shaped cells in the tension group. These SMCs in 3-D cultures exposed to tension also exhibited cellular alignment along the direction of applied tension. Since contractile SMCs are known to exhibit greater expression of phenotypic marker proteins as well as a more elongated morphology, we concluded that sustained tension on cells is an important mechanical stimulus for maintenance of the contractile phenotype of bladder SMCs in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adam R. M., J. A. Roth, H. L. Cheng, D. C. Rice, J. Khoury, S. B. Bauer, C. A. Peters, M. R. Freeman 2003 Signaling through PI3K/Akt mediates stretch and PDGF-BB-dependent DNA synthesis in bladder smooth muscle cells. J. Urol. 169(6): 2388–2393. doi:10.1097/01.ju.0000063980.99368.35

    Article  PubMed  CAS  Google Scholar 

  2. Arora P. D., N. Narani, C. A. McCulloch 1999 The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am. J. Pathol. 154(3): 871–882

    PubMed  CAS  Google Scholar 

  3. Burriesci G., I. C. Howard, E. A. Patterson 1999 Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J. Med. Eng. Technol. 23(6): 203–215. doi:10.1080/030919099294050

    Article  PubMed  CAS  Google Scholar 

  4. Cha J. M., S.-N. Park, S. H. Noh, H. Suh 2006 Time-dependent modulation of alignment and differentiation of smooth muscle cells seeded on a porous substrate undergoing cyclic mechanical strain. Artif. Organs 30(4): 250–258. doi:10.1111/j.1525-1594.2006.00212.x

    Article  PubMed  CAS  Google Scholar 

  5. Coplen D. E., E. J. Macarak, P. S. Howard 2003 Matrix synthesis by bladder smooth muscle cells is modulated by stretch frequency. In Vitro Cell Dev. Biol. Anim. 39(3): 157–162. doi :10.1290/1543-706X(2003)039<0157:MSBBSM>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  6. Cummings C. L., D. Gawlitta, R. M. Nerem, J. P. Stegemann 2004 Properties of engineered vascular constructs made from collagen, fibrin, and collagen–fibrin mixtures. Biomaterials 25(17): 3699–3706. doi:10.1016/j.biomaterials.2003.10.073

    Article  PubMed  CAS  Google Scholar 

  7. Discher D. E., P. Janmey, Y.-L. Wang 2005 Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751): 1139–1143. doi:10.1126/science.1116995

    Article  PubMed  CAS  Google Scholar 

  8. Dobrin P. B. 1996 Effect of histologic preparation on the cross-sectional area of arterial rings. J. Surg. Res. 61(2): 413–415. doi:10.1006/jsre.1996.0138

    Article  PubMed  CAS  Google Scholar 

  9. Engler A. J., M. A. Griffin, S. Sen, C. G. Bönnemann, H. L. Sweeney, D. E. Discher 2004 Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166(6): 877–887. doi:10.1083/jcb.200405004

    Article  PubMed  CAS  Google Scholar 

  10. Gosling J. A., L. S. Kung, J. S. Dixon, P. Horan, C. Whitbeck, R. M. Levin 2000 Correlation between the structure and function of the rabbit urinary bladder following partial outlet obstruction. J. Urol. 163(4): 1349–1356. doi:10.1016/S0022-5347(05)67776-2

    Article  PubMed  CAS  Google Scholar 

  11. Hirano Y., N. Ishiguro, M. Sokabe, M. Takigawa, K. Naruse 2008 Effects of tensile and compressive strains on response of a chondrocytic cell line embedded in type I collagen gel. J. Biotechnol. 133(2): 245–252. doi:10.1016/j.jbiotec.2007.07.955

    Article  PubMed  CAS  Google Scholar 

  12. Kropp B. P., Y. Zhang, J. J. Tomasek, R. Cowan, P. D. Furness 3rd, M. B. Vaughan, M. Parizi, E. Y. Cheng 1999 Characterization of cultured bladder smooth muscle cells: assessment of in vitro contractility. J. Urol. 162(5): 1779–1784. doi:10.1016/S0022-5347(05)68237-7

    Article  PubMed  CAS  Google Scholar 

  13. Lemack G. E., Z. Szabo, Z. Urban, C. D. Boyd, K. Csiszar, E. D. Vaughan Jr., D. Felsen 1999 Altered bladder function in transgenic mice expressing rat elastin. Neurourol. Urodyn. 18(1): 55–68. doi :10.1002/(SICI)1520-6777(1999)18:1<55::AID-NAU8>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  14. Nagatomi J., K. K. Toosi, J. S. Grashow, M. B. Chancellor, M. S. Sacks 2005 Quantification of bladder smooth muscle orientation in normal and spinal cord injured rats. Ann. Biomed. Eng. 33(8): 1078–1089. doi:10.1007/s10439-005-5776-x

    Article  PubMed  Google Scholar 

  15. Orsola A., R. M. Adam, C. A. Peters, M. R. Freeman 2002 The decision to undergo DNA or protein synthesis is determined by the degree of mechanical deformation in human bladder muscle cells. Urology 59(5): 779–783. doi:10.1016/S0090-4295(01)01648-X

    Article  PubMed  Google Scholar 

  16. Park J. M., R. M. Adam, C. A. Peters, P. D. Guthrie, Z. Sun, M. Klagsbrun, M. R. Freeman 1999 AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am. J. Physiol. 277(2 Pt 1): C294–C301

    PubMed  CAS  Google Scholar 

  17. Park J. M., T. Yang, L. J. Arend, J. B. Schnermann, C. A. Peters, M. R. Freeman, J. P. Briggs 1999 Obstruction stimulates COX-2 expression in bladder smooth muscle cells via increased mechanical stretch. Am. J. Physiol. 276(1 Pt 2): F129–F136

    PubMed  CAS  Google Scholar 

  18. Qu M.-J., B. Liu, H.-Q. Wang, Z.-Q. Yan, B.-R. Shen, Z.-L. Jiang 2007 Frequency-dependent phenotype modulation of vascular smooth muscle cells under cyclic mechanical strain. J. Vasc. Res. 44(5): 345–353. doi:10.1159/000102278

    Article  PubMed  Google Scholar 

  19. Rensen S. S. M., P. A. F. M. Doevendans, G. J. J. M. v. Eys 2007 Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 15(3): 100–108

    PubMed  CAS  Google Scholar 

  20. Seifter, J., A. Ratner, and D. Sloane. In: Concepts in Medical Physiology, edited by B. Sun. Baltimore: Lippincott Williams & Wilkins, 2005.

  21. Shier, D., J. Butler, and R. Lewis. In: Hole’s Human Anatomy and Physiology, 11th ed., edited by F. Schreiber. New York: McGraw-Hill, 2007.

  22. Stegemann J. P., R. M. Nerem 2003 Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Ann. Biomed. Eng. 31(4): 391–402. doi:10.1114/1.1558031

    Article  PubMed  Google Scholar 

  23. Upadhyay J., K. J. Aitken, C. Damdar, S. Bolduc, D. J. Bagli 2003 Integrins expressed with bladder extracellular matrix after stretch injury in vivo mediate bladder smooth muscle cell growth in vitro. J. Urol. 169(2): 750–755. doi:10.1016/S0022-5347(05)64007-4

    Article  PubMed  CAS  Google Scholar 

  24. Yu G., S. Bo, J. Xiyu, X. Enqing 2003 Effect of bladder outlet obstruction on detrusor smooth muscle cell: an in vitro study. J. Surg. Res. 114(2): 202–209. doi:10.1016/S0022-4804(03)00333-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Bruce Gao and Ms. Linda Jenkins of the Department of Bioengineering, Clemson University, for providing the rats used as the source of bladder cells and for assistance with histology, respectively. The authors also wish to thank Porvair plc (Norfolk, UK) for donating the Bio-Vyon used in the present study. The funding for this research was provided by Paralyzed Veterans of America (2289-02) and Clemson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiro Nagatomi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roby, T., Olsen, S. & Nagatomi, J. Effect of Sustained Tension on Bladder Smooth Muscle Cells in Three-Dimensional Culture. Ann Biomed Eng 36, 1744–1751 (2008). https://doi.org/10.1007/s10439-008-9545-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9545-5

Keywords

Navigation