Advertisement

From Plastic Sheets to Tablet PCs: A Digital Epigraphic Method for Recording Egyptian Rock Art and Inscriptions

  • Alberto Urcia
  • John C. Darnell
  • Colleen M. Darnell
  • Sara E. Zaia
Original Article

Abstract

Since 2010, the recording of rock art and inscription sites with Yale Egyptology concession areas in Upper Egypt has led to the development of new digital techniques. Those combine easily available technology with archaeological expertise to produce and collate publishable facsimiles within the fieldwork period, while remaining true to the conventions of the finest of earlier epigraphic publications. The ongoing threat to rock art sites and the recent ban of the Ministry of Antiquities on contact copies or direct tracings of petroglyphs brought urgency to effective and efficient means of documenting our archaeological sites. The nature of rock art itself, always unique and heterogeneous at the same time, does not allow technology to replace specialist knowledge: only an effective dialog between humans in the field and new technology has produced results both graphically attractive and practically useful. The present article will discuss the workflow we have developed, including the important role of tablet PCs in avoiding the potential distortion that intermediary copies may create (as well as multiple plastic sheets requiring re-alignment). Using an imaging-based recording technique called Structure from Motion, we are able to generate faithful and detailed three-dimensional models of the rock surface that are used to produce high-resolution ortho-rectified views (orthoimages) of each panel. Working on the orthoimages loaded into the tablet PC and tracing/collating in front of the original rock surface, the epigrapher can annotate, modify, or delete in real- time any information—both graphic and iconographic—pertaining to the petroglyphs. This facilitates the reading of the subject inscribed on the rock surface, even if irregular. It allows for a better control during the recording of inner and outer lines, especially for those areas that are damaged or weathered. Although our methodology was developed on Egyptian case studies, the series of tools and techniques involved are, in our opinion, much more broadly applicable to the wider panorama of African rock art and beyond.

Keywords

SfM 3D modelling Rock art Egypt Digital epigraphy Tablet PC Apple pencil 

Résumé

Depuis 2010, le relevé des sites d’art rupestre et d’inscriptions des concessions d’égyptologie de l’université de Yale en haute Égypte a donné lieu au développement de nouvelles techniques numériques associant des technologies d’accès facile à l’expertise archéologique pour produire des facsimilés publiables pendant le travail de terrain tout en restant conforme aux standard d’excellence de publications épigraphiques antérieures. La menace permanente pesant sur les sites d’art rupestres et l’interdiction récente des copies par contact et des tracés directs de pétroglyphes par le conseil suprême des antiquités égyptiennes rend urgent le développement de moyens efficaces pour documenter nos sites archéologiques. La nature de l’art rupestre elle-même, à la fois unique et hétérogène, ne permet pas à la technologie de remplacer directement la connaissance de spécialistes, seul un dialogue entre l’homme de terrain et les nouvelles technologies a produit des résultats attrayants et pratiques. Le présent article abordera le processus que nous avons développé, y compris le rôle important des tablettes graphique dans l’évitement des distorsions potentielles résultant de l’utilisation de copies intermédiaires (ainsi que des feuilles de plastique transparentes nécessitant un réalignement). L’utilisation d’une technique d'enregistrement basée sur l'imagerie appelée ‘Structure from Motion’, permet de générer des modèles tridimensionnels fidèles et détaillés de la surface de la roche qui sont utilisés pour produire des vues ortho-rectifiées à haute résolution (orthoimages) de chaque motif. En travaillant sur les orthoimages mémorisées dans une tablette et en les retraçant/réassemblant devant la surface de la roche d'origine, l'épigraphe peut annoter, modifier ou supprimer en temps réel toute information - graphique et iconographique – se rapportant aux pétroglyphes. Ceci, facilite le décryptement du sujet inscrit sur la surface de la roche, même si elle est irrégulière, et permet un meilleur contrôle lors de l'enregistrement des lignes internes et externes, en particulier pour les zones endommagées ou altérées. Bien que cette méthodologie ait été développée dans le contexte d’études égyptologiques, la série d'outils et de techniques impliqués est, à notre avis, plus largement applicable au panorama étendu de l'art rupestre africain et au-delà.

Notes

Acknowledgements

We would like to acknowledge the Aswan-Kom Ombo Archaeological Project (AKAP), directed by Maria C. Gatto (Leicester University) and Antonio Curci (University of Bologna) for support and motivation during the initial phases in the development of this method. Lastly, we thank the William K. and Marilyn M. Simpson Egyptology Endowment at Yale University for ongoing support of the Elkab Desert Survey Project.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alexander, C., Pinz, A., & Reinbacher, C. (2015). Multi-scale 3D rock-art recording. Digital Applications in Archaeology and Cultural Heritage, 2(2–3), 181–195.  https://doi.org/10.1016/j.daach.2015.02.003.CrossRefGoogle Scholar
  2. Bednarik, R. G. (2001). Rock art science: The scientific study of palaeoart, IFRAO 1. Turnhout: Brepols.Google Scholar
  3. Bednarik, R. G., Muzzolini, A., Seglie, D., Sher, Y., & Cinsens, M. (2003). Rock art glossary: A multilingual dictionary. Turnhout: Brepols.Google Scholar
  4. Bell, L. (1987). The epigraphic survey: The philosophy of Egyptian epigraphy after sixty years’ practical experience. In J. Assmann, G. Burkard, & V. Davies (Eds.), Problems and priorities in Egyptian archaeology (pp. 43–55). London: KPI Limited.Google Scholar
  5. Caminos, R. (1976). The recording of inscriptions and scenes in tombs and temples. In R. Caminos & H. G. Fischer (Eds.), Ancient Egyptian epigraphy and palaeography (pp. 1–25). New York: The Metropolitan Museum of Art.Google Scholar
  6. Caninas, J. C., Pires, H., Henriques, F., & Chambino, M. (2016). Rock art in Portugal’s border area. Rock Art Research: The Journal of the Australian Rock Art Research Association (AURA), 33(1), 1–10.Google Scholar
  7. Cassen, S., & Robin, G. (2010). Recording art on Neolithic stelae and passage tombs from digital photographs. Journal of Archaeological Method and Theory, 17(1), 1–14 Available on https://link.springer.com/article/10.1007/s10816-009-9075-y. Accessed 8 Mar 2018.CrossRefGoogle Scholar
  8. Chandler, H., & Fryer, J. G. (2005). Recording aboriginal rock art using cheap digital cameras and digital photogrammetry. Proceedings of CIPA XX International Symposium, International Cooperation to save the World’s Cultural Heritage (26 September – 1 October 2005, Torino, Italy), 1–7. Available on https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/2240 (January 6, 2018).
  9. Chandler, J. H., Bryan, P., & Fryer, J. G. (2007). The development and application of a simple methodology for recording rock art using consumer grade digital cameras. The Photogrammetric Record, 22(117), 10–21.  https://doi.org/10.1111/j.1477-9730.2007.00414.x.CrossRefGoogle Scholar
  10. Chippindale, C. (2004). From millimeter up to kilometer: A framework of space and of scale for reporting and studying rock-art in its landscape. In C. Chippindale & G. Nash (Eds.), The figured landscapes of rock-art: Looking at pictures in place (pp. 102–117). Cambridge: Cambridge University Press.Google Scholar
  11. Curci, A., Urcia, A., Lippiello, L., & Gatto, M. C. (2012). Using digital technologies to document rock art in the Aswan-Kom Ombo region (Egypt). Sahara Journal - Prehistory and History of the Sahara, 23, 75–86 Available on https://www.academia.edu/5277741. Accessed 15 Feb 2018.Google Scholar
  12. Darnell, J. C. (2002). Theban Desert Road Survey in the Egyptian Western Desert I: Gebel Tjauti rock inscriptions 1–45 and Wadi el-Hol rock inscriptions 1–45, OIP 119. Chicago: Oriental Institute of the University of Chicago.Google Scholar
  13. Debevec, P. E., Camillo, J. T., & Malik, J. (1996). Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 96), Annual Conference Series, “Association for Computing Machinery”, ACM SIGGRAPH, New York, 11–20.  https://doi.org/10.1145/237170.237191.
  14. Defrasne, C. (2014). Digital image enhancement for recording rupestrian engravings: Applications to an alpine rock shelter. Journal of Archaeological Science, 50, 31–38.  https://doi.org/10.1016/j.jas.2014.06.010.CrossRefGoogle Scholar
  15. Der Manuelian, P. (1998). Digital epigraphy: An approach to streamlining Egyptological epigraphic method. Journal of the American Research Center in Egypt, 35, 97–113.  https://doi.org/10.2307/40000464.CrossRefGoogle Scholar
  16. Díaz-Guardamino, M., García Sanjuán, L., Wheatley, D., & Rodríguez Zamora, V. (2015). RTI and the study of engraved rock art: A re-examination of the Iberian south-western stelae of Setefilla and Almadén de la Plata 2 (Seville, Spain). Digital Applications in Archaeology and Cultural Heritage, 2(2–3), 41–54.  https://doi.org/10.1016/j.daach.2015.07.002.CrossRefGoogle Scholar
  17. Domingo, I., Villaverde, V., López-Montalvo, E., Lerma, J. L., & Cabrelles, M. (2013). Latest developments in rock art recording: Towards an integral documentation of Levantine rock art sites combining 2D and 3D recording techniques. Journal of Archaeological Science, 40(4), 1879–1889.  https://doi.org/10.1016/j.jas.2012.11.024.CrossRefGoogle Scholar
  18. Fraile, F., Garcia, L., & Klink, A. (2016). 3D documentation and use of DStretch for two new sites with post-Palaeolithic rock art in Sierra Morena, Spain. Rock Art Research: The Journal of the Australian Rock Art Research Association (AURA), 33(2), 1–16.Google Scholar
  19. Gonzalez-Aguilera, D., Rodriguez-Gonzalvez, P., & Mancera-Taboada, J. (2011). Application of non-destructive techniques to the recording and modelling of Palaeolithic rock art. InTech - Laser Scanning, Theory and Applications (pp. 305–326). Available on https://www.researchgate.net/publication/267736818. Accessed 12 Feb 2018.
  20. Hameeuw, H., Devillers, A., & Claes, W. (2014). Relighting Egyptian rock art: Rapid, accurate HG imaging of prehistoric petroglyphs, Royal Academy of Overseas Sciences. Proceedings of Young Researchers Overseas’ Day Conference (Brussels, 14 December 2014), “Young Researchers Overseas’ Day” (16.12.2014), 1–11. Available on https://lirias.kuleuven.be/handle/123456789/538100. Accessed 6 Jan 2018.
  21. Hernandez, J. F., Aguilera, D. G., Gonzálvez, P. R., & Taboada, J. M. (2015). Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: An effective, low-cost tool for archaeological applications. Archaeometry, 57, 128–145.  https://doi.org/10.1111/arcm.12078.CrossRefGoogle Scholar
  22. Le Quellec, J. L., Duquesnoy, F., & Defrasne, C. (2015). Digital image enhancement with DStretch®: Is complexity always necessary for efficiency? Digital Applications in Archaeology and Cultural Heritage, 2(2–3), 55–67.  https://doi.org/10.1016/j.daach.2015.01.003.CrossRefGoogle Scholar
  23. Leisen, H., Krause, S., Riemer, H., Seidel, J., & Büttner, E. (2013). New and integral approaches to rock art recording as means of analysis and preservation. In R. Kuper (Ed.), Wadi Sura—the Cave of Beasts (pp. 42–49). Köln: Heinrich-Barth Institut.Google Scholar
  24. Lippiello, L. (2012). Landscapes of Ancient Egyptian religion: Rock art as indicator for formal ritual spaces during the formative stage of the Egyptian State. PhD dissertation, Yale University.Google Scholar
  25. Loendorf, L. (2001). Rock art recording. In D. S. Whitley (Ed.), Handbook of rock art research (pp. 55–79). Oxford: Altamira Press.Google Scholar
  26. Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., & Gabbianelli, G. (2013). Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5, 6880–6898.  https://doi.org/10.3390/rs5126880.CrossRefGoogle Scholar
  27. Mark, R. & Billo, E. (2011). Using super-high resolution panoramas (Gigapans) to document and study rock art panels. Bulletin de la Société Préhistorique Ariège-Pyrénées, 65–66, 1257–1264. Available on http://blogs.univ-tlse2.fr/palethnologie/wp-content/files/2013/fr-FR/version-longue/articles/FOR7_Mark-Billo.pdf. Accessed 12 Jan 2018.
  28. Plets, G., Gheyle, W., Verhoeven, G., Reu, J., Bourgeois, J., Verhegge, J., & Stichelbaut, B. (2012). Three-dimensional recording of archaeological remains in the Altai Mountains. Antiquity, 86(333), 884–897.  https://doi.org/10.1017/S0003598X00047980.CrossRefGoogle Scholar
  29. Plisson, H., & Zotkina, L. V. (2015). From 2D to 3D at macro- and microscopic scale in rock art studies. Digital Applications in Archaeology and Cultural Heritage, 2(2–3), 102–119.  https://doi.org/10.1016/j.daach.2015.06.002.CrossRefGoogle Scholar
  30. Poier, G., Seidl, M., Zeppelzauer, M., Reinbacher, C., Schaich, M., Bellandi, G., Marretta, A., & Bischof, H. (2017). PetroSurf3D—A dataset for high-resolution 3D surface segmentation. Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing (CBMI '17), Article No. 5 (Florence, Italy — June 19–21, 2017), ACM New York, 1–7.  https://doi.org/10.1145/3095713.3095719.
  31. Seidl M., & Breiteneder, C. (2012). Automated petroglyph image segmentation with interactive classifier fusion. Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP '12), Article No. 66, (Mumbai, India — December 16–19, 2012), ACM International Conference Proceeding Series, 1–8.  https://doi.org/10.1145/2425333.2425399.
  32. Seidl, M., Wieser, E., & Alexander, C. (2015). Automated classification of petroglyphs. Digital Applications in Archaeology and Cultural Heritage, 2(2–3), 196–212.  https://doi.org/10.1016/j.daach.2015.03.001.CrossRefGoogle Scholar
  33. Torres, J. C., Arroyo, G., Romo, C., & De Haro, J. (2012). 3D Digitization using Structure from Motion, CEIG - Spanish Computer Graphics Conference. I. Navazo & G. Patow (Eds.), 1–11. Available on https://www.researchgate.net/publication/258246473. Accessed 12 Feb 2018.
  34. Torres-Martínez, J. A., Sánchez-Aparicio, L. J., Hernández-López, D., & González-Aguilera, D. (2017). Combining geometrical and radiometrical features in the evaluation of rock art paintings. Digital Applications in Archaeology and Cultural Heritage, 5, 10–20.  https://doi.org/10.1016/j.daach.2017.04.001.CrossRefGoogle Scholar
  35. Traunecker, C. (1987). Les techniques d’épigraphie de terrain: Principes et pratique. In J. Assmann, G. Burkard, & V. Davies (Eds.), Problems and priorities in Egyptian archaeology (pp. 261–298). London: KPI Limited.Google Scholar
  36. Vértes K. (2014). The epigraphic survey of the Oriental Institute, University of Chicago. Available on https://oi.uchicago.edu/research/publications/misc/digital-epigraphy. Accessed 15 Feb 2018.
  37. Wang, J., Shi, F., Zhang, J., & Liu, Y. (2008). A new calibration model of camera lens distortion. Pattern Recognition, 41, 607–615.  https://doi.org/10.1016/j.patcog.2007.06.012.CrossRefGoogle Scholar
  38. Zeppelzauer, M., Poier, G., Seidl, M., Reinbacher, C., Schulter, S., Breiteneder, C., & Bischof, H. (2016). Interactive 3D segmentation of rock-art by enhanced depth maps and gradient preserving regularization. Journal on Computing and Cultural Heritage, 9(4), 1–30.  https://doi.org/10.1145/2950062.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Near Eastern Languages and CivilizationsYale UniversityNew HavenUSA
  2. 2.University of HartfordWest HartfordUSA
  3. 3.Department of AnthropologyHarvard UniversityCambridgeUSA

Personalised recommendations