Annals of Finance

, Volume 14, Issue 2, pp 223–251 | Cite as

On the implied market price of risk under the stochastic numéraire

Research Article
  • 51 Downloads

Abstract

This papers addresses the stock option pricing problem in a continuous time market model where there are two stochastic tradable assets, and one of them is selected as a numéraire. An equivalent martingale measure is not unique for this market, and there are non-replicable claims. Some rational choices of the equivalent martingale measures are suggested and discussed, including implied measures calculated from bond prices constructed as a risk-free investment with deterministic payoff at the terminal time. This leads to possibility to infer a implied market price of risk process from observed historical bond prices.

Keywords

Implied parameters Market price of risk Random numéraire Stochastic bond price Incomplete market 

JEL Classification

G13 

Notes

Acknowledgements

This work was supported by ARC grant of Australia DP120100928 to the author. The author would like to thank the anonymous reviewers for the detailed suggestions that improved the manuscript.

References

  1. Back, K.: Martingale pricing. Annu Rev Financ Econ 2, 235–250 (2010)CrossRefGoogle Scholar
  2. Becherer, D.: The numeraire portfolio for unbounded semimartingales. Finance Stoch 5(3), 327–341 (2010)CrossRefGoogle Scholar
  3. Benninga, S., Bjork, T., Wiener, Z.: On the use of numeraires in option pricing. J Deriv 10(2), 43–58 (2002)CrossRefGoogle Scholar
  4. Biagini, F., Pratelli, M.: Local risk minimization and numeraire. J Appl Probab 36(4), 1126–1139 (1999)CrossRefGoogle Scholar
  5. Bielecki, T.R., Jeanblanc, M., Rutkowski, M.: Credit Risk Modeling. Osaka: Osaka University Press (2009)Google Scholar
  6. Brennan, M.J.: The role of learning in dynamic portfolio decisions. Eur Finance Rev 1, 295–306 (1998)CrossRefGoogle Scholar
  7. Cheng, S.T.: On the feasibility of arbitrage-based option pricing when stochastic bond price processes are involved. J Econ Theory 53(1), 185–198 (1991)CrossRefGoogle Scholar
  8. Dokuchaev, N.: Dynamic Portfolio Strategies: Quantitative Methods and Empirical Rules for Incomplete Information. Boston: Kluwer Academic Publishers (2002)Google Scholar
  9. Dokuchaev, N.G.: Optimal solution of investment problems via linear parabolic equations generated by Kalman filter. SIAM J Control Optim 44(4), 1239–1258 (2005)CrossRefGoogle Scholar
  10. Dokuchaev, N.: Two unconditionally implied parameters and volatility smiles and skews. Appl Financ Econ Lett 2, 199–204 (2006)CrossRefGoogle Scholar
  11. Dokuchaev, N.: Option pricing via maximization over uncertainty and correction of volatility smile. Int J Theor Appl Finance: IJTAF 14(4), 507–524 (2011)CrossRefGoogle Scholar
  12. El Karoui, N., Quenez, M.: Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J Control Optim 33(1), 29–66 (1995)CrossRefGoogle Scholar
  13. Föllmer, H., Sondermann, D.: Hedging of non-redundant contingent claims. In: Hildenbrand, W., Mas-Colell, A. (eds.) Contribution to Mathematical Economics, pp. 205–223. New York: North Holland (1986)Google Scholar
  14. Geman, H., El Karoui, N., Rochet, J.C.: Changes of numéraire, changes of probability measure and option pricing. J Appl Probab 32(2), 443–458 (1995)CrossRefGoogle Scholar
  15. Hin, L.Y., Dokuchaev, N.: On the implied volatility layers under the future risk-free rate uncertainty. Int J Financ Mark Deriv 3(4), 392–408 (2014)CrossRefGoogle Scholar
  16. Hin, L.Y., Dokuchaev, N.: Short rate forecasting based on the inference from the CIR model for multiple yield curve dynamics. Ann Financ Econ 11(1), 1650004 (2016a)CrossRefGoogle Scholar
  17. Hin, L.Y., Dokuchaev, N.: Computation of the implied discount rate and volatility for an overdefined system using stochastic optimization. IMA J Manag Math 27(4), 505–527 (2016b)CrossRefGoogle Scholar
  18. Issaka, A., SenGupta, I.: Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index. Ann Finance 13(4), 401–434 (2017)CrossRefGoogle Scholar
  19. Jamshidian, F.: Numeraire invariance and application to option pricing and hedging, working paper. http://mpra.ub.uni-muenchen.de/7167/ (2008)
  20. Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Heidelberg: Springer (2009)Google Scholar
  21. Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch 11, 447–493 (2007)CrossRefGoogle Scholar
  22. Kardaras, C.: Numéraire-invariant preferences in financial modeling. Ann Appl Probab 20, 1697–1728 (2010)CrossRefGoogle Scholar
  23. Kim, Y.-J., Kunitomo, N.: Pricing options under stochastic interest rates: a new approach. Asia Pac Financ Mark 6(1), 49–70 (1999)CrossRefGoogle Scholar
  24. Krylov, N.V.: Controlled Diffusion Processes. New York: Springer (1980)Google Scholar
  25. Ruf, J.: Negative call prices. Ann Finance 9, 787–794 (2013)CrossRefGoogle Scholar
  26. Schroder, M.: Changes of numeraire for pricing futures, forwards, and options. Rev Financ Stud 12(5), 1143–1163 (1999)CrossRefGoogle Scholar
  27. Schweizer, M.: A guided tour through quadratic hedging approaches. In: Jouini, E., Cvitanic, J., Musiela, M. (eds.) Option Pricing, Interest Rates and Risk Management, pp. 538–574. Cambridge: Cambridge University Press (2001)Google Scholar
  28. Turvey, C.G., Komar, S.: Martingale restrictions and the implied market price of risk. Can J Agric Econ 54, 379–399 (2006)CrossRefGoogle Scholar
  29. Vecer, J.: Stochastic Finance: A Numeraire Approach. Boca Raton: CRC Press (2011)Google Scholar
  30. Vecer, J., Xu, M.: Pricing Asian options in a semimartingale model. Quant Finance 4, 170–175 (2004)CrossRefGoogle Scholar
  31. Weron, R.: Market price of risk implied by Asian-style electricity options and futures. Energy Econ 30, 1098–1115 (2008)CrossRefGoogle Scholar
  32. Won, D., Hahn, G., Yannelis, N.C.: Capital market equilibrium without riskless assets: heterogeneous expectations. Ann Finance 4, 183–195 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsCurtin UniversityPerthAustralia
  2. 2.National Research University ITMOSaint PetersburgRussia

Personalised recommendations