Parameterized level set method for structural topology optimization based on the Cosserat elasticity

Abstract

When describing the mechanical behavior of some engineering materials, such as composites, grains, biological materials and cellular solids, the Cosserat continuum theory has more powerful capabilities compared with the classical Cauchy elasticity since an additional local rotation of point and its counterpart (couple stress) are considered in the Cosserat elasticity to represent the material microscale effects. In this paper, a parameterized level set topology optimization method is developed based on the Cosserat elasticity for the minimum compliance problem of the Cosserat solids. The influence of material characteristic length and Cosserat shear modulus on the optimized structure is investigated in detail. It can be found that the microstructural constants in the Cosserat elasticity have a significant impact on the optimized topology configurations. In addition, the minimum feature size and the geometric complexity of the optimized structure can be controlled implicitly by adjusting the parameters of the characteristic length and Cosserat shear modulus easily. Furthermore, the optimized structure obtained by the developed Cosserat elasticity based parameterized level set method will degenerate to the result by using the classical Cauchy elasticity based parameterized level set method when the Cosserat shear modulus approaches zero.

Graphic Abstract

A parameterized level set topology optimization method is developed based on the Cosserat elasticity for the optimization of minimum compliance of the structures with micropolar materials. The influence of characteristic length and Cosserat shear modulus of the micropolar material on the optimized structure has been investigated in detail. It can be found that the minimum feature size and the geometric complexity of the optimized structure can be controlled implicitly by adjusting the parameters of the characteristic length and Cosserat shear modulus easily.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Anderson, W.B., Lakes, R.S.: Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. Mater. Sci. 29, 6413–6419 (1994)

    Article  Google Scholar 

  2. 2.

    Fleck, N.A., Muller, G.M., Ashby, M.F., et al.: Strain gradient plasticity: theory and experiment. Acta Metal Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  3. 3.

    Cosserat, E., Cosserat, F.: Theorie des Corps Deformable. Herman Etfils, Paris. 3–12 (1909)

  4. 4.

    Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. An. 11, 385–414 (1962)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. An. 16, 51–78 (1964)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Aifantis, E.: On the microstructural origin of certain inelastic models. ASME J. Eng. Mater. Technol. 106, 326–330 (1984)

    Article  Google Scholar 

  7. 7.

    Eringen, A.: On different equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  8. 8.

    Tang, H.X., Guan, Y.H., Zhang, X., et al.: Low-order mixed finite element analysis of progressive failure in pressure-dependent materials within the framework of the Cosserat continuum. Eng. Comput. 34, 251–271 (2017)

    Article  Google Scholar 

  9. 9.

    Tang, H.X., Wei, W.C., Liu, F., et al.: Elastoplastic Cosserat continuum model considering strength anisotropy and its application to the analysis of slope stability. Copput. Geotech. 117, 103235 (2020)

    Article  Google Scholar 

  10. 10.

    Xiu, C.X., Chu, X.H., Wang, J., et al.: A micromechanics-based micromorphic model for granular materials and prediction on dispersion behaviors. Granul. Matter. 22, 74 (2020)

    Article  Google Scholar 

  11. 11.

    Sigmund, O.: A 99 line topology optimization code written in matlab. structural and multidisciplinary optimization. Struct. Mutidiscip. Optim. 21, 120–127 (2001)

  12. 12.

    Wang., M.Y., Wang., X., Guo., D.: A level set method for structural topology optimization. Comput. Method Appl. Mech. 192, 227 (2003)

  13. 13.

    Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)

    Article  Google Scholar 

  14. 14.

    Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)

    Article  Google Scholar 

  15. 15.

    Zong, H., Liu, H., Ma, Q., et al.: VCUT level set method for topology optimization of functionally graded cellular structures. Comput. Methods Appl. Mech. Eng. 354, 487–505 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Liu, H., Zong, H., Shi, T., et al.: M-VCUT level set method for optimizing cellular structures. Comput. Methods Appl. Mech. Eng. 367, 113154 (2020)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Xia, Q., Zong, H., Shi, T., et al.: Optimizing cellular structures through the M-VCUT level set method with microstructure mapping and high order cutting. Compos. Struct. (2020), in press. https://doi.org/10.1016/j.compstruct.2020.113298

  18. 18.

    Gei, M., Rovati, M., Veber, D.: Effect of internal length scale on optimal topologies for Cosserat continua. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. pp. 157–166 (2006)

  19. 19.

    Rovati, M., Veber, D.: Optimal topologies for Cosserat solids. Struct. Mutidiscip. Optim. 33, 47–59 (2007)

    Article  Google Scholar 

  20. 20.

    Optimal topologies in structural design of Cosserat materials: Arimitsu, Y., Karasu, K., Wu., Z.Q. Procedia Eng. 10, 1633–1638 (2011)

    Article  Google Scholar 

  21. 21.

    Liu, S.T., Su, W.Z.: Topology optimization of couple-stress material structures. Struct. Mutidiscip. Optim. 40, 319 (2010)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Li, L., Zhang, G., Khandelwal, K.: Topology optimization of structures with gradient elastic material. Struct. Mutidiscip. Optim. 56, 1–20 (2017)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Li, L., Khandelwal, K.: Topology optimization of structures with length-scale effects using elasticity with microstructure theory. Comput. Struct. 157, 165–177 (2015)

    Article  Google Scholar 

  24. 24.

    Bruggi, M., Taliercio, A.: Maximization of the fundamental eigenfrequency of Cosserat solids through topology optimization. Struct. Mutidiscip. Optim. 46, 549–560 (2012)

    Article  Google Scholar 

  25. 25.

    Su, W.Z., Liu, S.T.: Topology design for maximization of fundamental frequency of couple-stress continuum. Struct. Mutidiscip. Optim. 53, 395–408 (2016)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Su, W.Z., Liu, S.T.: Size-dependent microstructure design for maximal fundamental frequencies of structures. Struct. Mutidiscip. Optim. 62, 543–557 (2020)

    Article  Google Scholar 

  27. 27.

    Veber, D., Taliercio, A.: Topology optimization of three-dimensional non-centrosymmetric Cosserat bodies. Struct. Mutidiscip. Optim. 45, 575–587 (2012)

    Article  Google Scholar 

  28. 28.

    Wang, S.Y., Wang, M.Y.: Radial basis functions and level set method for structural topology optimization. Int. J. Numer. Methods Eng. 65, 2060–2090 (2006)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Wei., P., Li., Z., Li., X., et al.: An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions. Struct. Mutidiscip. Optim. 58, 831 (2018)

  30. 30.

    Liu, H., Zong, H., Tian, Y., et al.: A novel subdomain level set method for structural topology optimization and its application in graded cellular structure design. Struct. Mutidiscip. Optim. 60, 2221–2247 (2019)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Xiu, C.X., Chu, X.H., Wang, J.: Prediction on dispersion in elastoplastic unsaturated granular media. Theor. Appl. Mech. Lett. 10, 74–78 (2020)

    Article  Google Scholar 

  32. 32.

    Chang, J., Chu, X., Xu, Y.: Finite-element analysis of failure in transversely isotropic geomaterials. Int. J. Geomech. 15, 04014096 (2014)

    Article  Google Scholar 

  33. 33.

    Xia, Q., Shi, T.L.: Constraints of distance from boundary to skeleton: For the control of length scale in level set based structural topology optimization. Comput. Method. Appl. Mech. 295, 525–545 (2015)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Guo, X., Zhang, W.S., Zhong, W.L.: Explicit feature control in structural topology optimization via level set method. Comput. Methods Appl. Mech. Eng. 272, 254–378 (2014)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 12072242, 11772237, and 11472196), the Hubei Provincial Natural Science Foundation (Grant 2020CFB816), and the Fundamental Research Funds for the Central Universities (Grant 2042018kf0016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hui Liu.

Additional information

Executive editor: Xu Guo

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wan, J., Chu, X. et al. Parameterized level set method for structural topology optimization based on the Cosserat elasticity. Acta Mech. Sin. (2021). https://doi.org/10.1007/s10409-020-01045-z

Download citation

Keywords

  • Structural topology optimization
  • Cosserat continuum theory
  • Parameterized level set method
  • Cosserat elasticity
  • Scale effect